Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kunjal Patel; Maryam Sadeghilaridjani; Mayur Pole; Sundeep Mukherjee;

    Abstract Refractory high entropy alloys have recently attracted widespread attention due to their outstanding mechanical properties at elevated temperatures, making them appealing for concentrating solar power and nuclear energy applications. However, their molten salt corrosion behavior has not been reported, which is critical in evaluating their application merit. Here, the corrosion behavior of two recently developed refractory high entropy alloys, namely TaTiVWZr and HfTaTiVZr, was studied in molten 33NaCl–22KCl–45MgCl2 (wt. %) eutectic salt at 450 °C and 650 °C, using potentiodynamic polarization technique. The results were compared with benchmark alloys, namely 304 stainless steel (SS304) and Inconel 718 (IN718). TaTiVWZr refractory high entropy alloy exhibited an order of magnitude lower corrosion current density (Icorr = 0.7× 10-3 A cm-2) compared to SS304 (Icorr = 9.2 × 10-3 A cm-2) at the higher temperature of 650 °C. The corrosion rate of all the alloys increased with increase in temperature from 450 °C to 650 °C with the exception of TaTiVWZr. The TaTiVWZr alloy showed a corrosion rate of ~ 5 mm/year at 650 °C compared to ~ 110 mm/year for SS304. HfTaTiVZr and IN718 showed comparable corrosion rates in the range of ~ 40 mm/year at 650 °C. The high corrosion resistance of the two refractory high entropy alloys was attributed to a combination of three factors: (i) slower chlorination rate of refractory elements in the molten chloride salt environment driven by thermodynamics, (ii) formation of stable Ta–V and Ta–V–W based complex oxides on their surface, and (iii) Ti/TiCl2 and Zr/ZrCl2 redox couple formation which retarded the depletion of refractory elements. In contrast, the Cr-, Fe-, and Ni-based surface passivation oxides for SS304 and IN718 were less protective in the molten salt environment, particularly at the higher temperature of 650 °C.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chaitanya Mahajan; Vahid Hasannaeimi; Nico Neuber; Xiaowei Wang; +3 Authors

    Metallic glasses or amorphous alloys, with their excellent chemical stability, disordered atomic arrangement, and ability for thermoplastic nanostructuring, show promising performance toward a range of electrocatalytic reactions in proton-exchange membrane fuel cells. However, there are knowledge gaps and a distinct lack of understanding of the role of amorphous alloy chemistry in determining their catalytic activity. Here, we demonstrate the influence of alloy chemistry and the associated electronic structure on the hydrogen oxidation reaction (HOR) activity of a systematic series of Pt42.5-xPdxCu27Ni9.5P21 bulk metallic glasses (BMGs) with x = 0 to 42.5 at%. The HOR activity and electrochemical active surface area as a function of composition were in the form of volcano plots, with a peak around equal proportion of Pt and Pd. The lower relative electron work function and higher binding energy of the Pt core level explain the reduced charge-transfer resistance and improved electrocatalytic activity due to weakened chemisorption of protons in the mid-range composition. Density functional theory calculations show the lower free energy change and higher hydrogen adsorption density for these Pt42.5-xPdxCu27Ni9.5P21 BMGs, suggesting a synergistic effect from the presence of both noble metals, Pt and Pd.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Applied Material...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ACS Applied Materials & Interfaces
    Article . 2023 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Applied Material...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ACS Applied Materials & Interfaces
      Article . 2023 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kunjal Patel; Maryam Sadeghilaridjani; Mayur Pole; Sundeep Mukherjee;

    Abstract Refractory high entropy alloys have recently attracted widespread attention due to their outstanding mechanical properties at elevated temperatures, making them appealing for concentrating solar power and nuclear energy applications. However, their molten salt corrosion behavior has not been reported, which is critical in evaluating their application merit. Here, the corrosion behavior of two recently developed refractory high entropy alloys, namely TaTiVWZr and HfTaTiVZr, was studied in molten 33NaCl–22KCl–45MgCl2 (wt. %) eutectic salt at 450 °C and 650 °C, using potentiodynamic polarization technique. The results were compared with benchmark alloys, namely 304 stainless steel (SS304) and Inconel 718 (IN718). TaTiVWZr refractory high entropy alloy exhibited an order of magnitude lower corrosion current density (Icorr = 0.7× 10-3 A cm-2) compared to SS304 (Icorr = 9.2 × 10-3 A cm-2) at the higher temperature of 650 °C. The corrosion rate of all the alloys increased with increase in temperature from 450 °C to 650 °C with the exception of TaTiVWZr. The TaTiVWZr alloy showed a corrosion rate of ~ 5 mm/year at 650 °C compared to ~ 110 mm/year for SS304. HfTaTiVZr and IN718 showed comparable corrosion rates in the range of ~ 40 mm/year at 650 °C. The high corrosion resistance of the two refractory high entropy alloys was attributed to a combination of three factors: (i) slower chlorination rate of refractory elements in the molten chloride salt environment driven by thermodynamics, (ii) formation of stable Ta–V and Ta–V–W based complex oxides on their surface, and (iii) Ti/TiCl2 and Zr/ZrCl2 redox couple formation which retarded the depletion of refractory elements. In contrast, the Cr-, Fe-, and Ni-based surface passivation oxides for SS304 and IN718 were less protective in the molten salt environment, particularly at the higher temperature of 650 °C.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chaitanya Mahajan; Vahid Hasannaeimi; Nico Neuber; Xiaowei Wang; +3 Authors

    Metallic glasses or amorphous alloys, with their excellent chemical stability, disordered atomic arrangement, and ability for thermoplastic nanostructuring, show promising performance toward a range of electrocatalytic reactions in proton-exchange membrane fuel cells. However, there are knowledge gaps and a distinct lack of understanding of the role of amorphous alloy chemistry in determining their catalytic activity. Here, we demonstrate the influence of alloy chemistry and the associated electronic structure on the hydrogen oxidation reaction (HOR) activity of a systematic series of Pt42.5-xPdxCu27Ni9.5P21 bulk metallic glasses (BMGs) with x = 0 to 42.5 at%. The HOR activity and electrochemical active surface area as a function of composition were in the form of volcano plots, with a peak around equal proportion of Pt and Pd. The lower relative electron work function and higher binding energy of the Pt core level explain the reduced charge-transfer resistance and improved electrocatalytic activity due to weakened chemisorption of protons in the mid-range composition. Density functional theory calculations show the lower free energy change and higher hydrogen adsorption density for these Pt42.5-xPdxCu27Ni9.5P21 BMGs, suggesting a synergistic effect from the presence of both noble metals, Pt and Pd.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Applied Material...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ACS Applied Materials & Interfaces
    Article . 2023 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Applied Material...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ACS Applied Materials & Interfaces
      Article . 2023 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph