- home
- Advanced Search
- Energy Research
- Closed Access
- Energy Research
- Closed Access
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Kunjal Patel; Maryam Sadeghilaridjani; Mayur Pole; Sundeep Mukherjee;Abstract Refractory high entropy alloys have recently attracted widespread attention due to their outstanding mechanical properties at elevated temperatures, making them appealing for concentrating solar power and nuclear energy applications. However, their molten salt corrosion behavior has not been reported, which is critical in evaluating their application merit. Here, the corrosion behavior of two recently developed refractory high entropy alloys, namely TaTiVWZr and HfTaTiVZr, was studied in molten 33NaCl–22KCl–45MgCl2 (wt. %) eutectic salt at 450 °C and 650 °C, using potentiodynamic polarization technique. The results were compared with benchmark alloys, namely 304 stainless steel (SS304) and Inconel 718 (IN718). TaTiVWZr refractory high entropy alloy exhibited an order of magnitude lower corrosion current density (Icorr = 0.7× 10-3 A cm-2) compared to SS304 (Icorr = 9.2 × 10-3 A cm-2) at the higher temperature of 650 °C. The corrosion rate of all the alloys increased with increase in temperature from 450 °C to 650 °C with the exception of TaTiVWZr. The TaTiVWZr alloy showed a corrosion rate of ~ 5 mm/year at 650 °C compared to ~ 110 mm/year for SS304. HfTaTiVZr and IN718 showed comparable corrosion rates in the range of ~ 40 mm/year at 650 °C. The high corrosion resistance of the two refractory high entropy alloys was attributed to a combination of three factors: (i) slower chlorination rate of refractory elements in the molten chloride salt environment driven by thermodynamics, (ii) formation of stable Ta–V and Ta–V–W based complex oxides on their surface, and (iii) Ti/TiCl2 and Zr/ZrCl2 redox couple formation which retarded the depletion of refractory elements. In contrast, the Cr-, Fe-, and Ni-based surface passivation oxides for SS304 and IN718 were less protective in the molten salt environment, particularly at the higher temperature of 650 °C.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 14 Jul 2023Publisher:American Chemical Society (ACS) Funded by:NSF | PFI-TT: Next Generation F...NSF| PFI-TT: Next Generation Fuel Cell Catalysts for Efficient Energy ConversionChaitanya Mahajan; Vahid Hasannaeimi; Nico Neuber; Xiaowei Wang; Ralf Busch; Isabella Gallino; Sundeep Mukherjee;pmid: 36695713
Metallic glasses or amorphous alloys, with their excellent chemical stability, disordered atomic arrangement, and ability for thermoplastic nanostructuring, show promising performance toward a range of electrocatalytic reactions in proton-exchange membrane fuel cells. However, there are knowledge gaps and a distinct lack of understanding of the role of amorphous alloy chemistry in determining their catalytic activity. Here, we demonstrate the influence of alloy chemistry and the associated electronic structure on the hydrogen oxidation reaction (HOR) activity of a systematic series of Pt42.5-xPdxCu27Ni9.5P21 bulk metallic glasses (BMGs) with x = 0 to 42.5 at%. The HOR activity and electrochemical active surface area as a function of composition were in the form of volcano plots, with a peak around equal proportion of Pt and Pd. The lower relative electron work function and higher binding energy of the Pt core level explain the reduced charge-transfer resistance and improved electrocatalytic activity due to weakened chemisorption of protons in the mid-range composition. Density functional theory calculations show the lower free energy change and higher hydrogen adsorption density for these Pt42.5-xPdxCu27Ni9.5P21 BMGs, suggesting a synergistic effect from the presence of both noble metals, Pt and Pd.
ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.2c18266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.2c18266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Kunjal Patel; Maryam Sadeghilaridjani; Mayur Pole; Sundeep Mukherjee;Abstract Refractory high entropy alloys have recently attracted widespread attention due to their outstanding mechanical properties at elevated temperatures, making them appealing for concentrating solar power and nuclear energy applications. However, their molten salt corrosion behavior has not been reported, which is critical in evaluating their application merit. Here, the corrosion behavior of two recently developed refractory high entropy alloys, namely TaTiVWZr and HfTaTiVZr, was studied in molten 33NaCl–22KCl–45MgCl2 (wt. %) eutectic salt at 450 °C and 650 °C, using potentiodynamic polarization technique. The results were compared with benchmark alloys, namely 304 stainless steel (SS304) and Inconel 718 (IN718). TaTiVWZr refractory high entropy alloy exhibited an order of magnitude lower corrosion current density (Icorr = 0.7× 10-3 A cm-2) compared to SS304 (Icorr = 9.2 × 10-3 A cm-2) at the higher temperature of 650 °C. The corrosion rate of all the alloys increased with increase in temperature from 450 °C to 650 °C with the exception of TaTiVWZr. The TaTiVWZr alloy showed a corrosion rate of ~ 5 mm/year at 650 °C compared to ~ 110 mm/year for SS304. HfTaTiVZr and IN718 showed comparable corrosion rates in the range of ~ 40 mm/year at 650 °C. The high corrosion resistance of the two refractory high entropy alloys was attributed to a combination of three factors: (i) slower chlorination rate of refractory elements in the molten chloride salt environment driven by thermodynamics, (ii) formation of stable Ta–V and Ta–V–W based complex oxides on their surface, and (iii) Ti/TiCl2 and Zr/ZrCl2 redox couple formation which retarded the depletion of refractory elements. In contrast, the Cr-, Fe-, and Ni-based surface passivation oxides for SS304 and IN718 were less protective in the molten salt environment, particularly at the higher temperature of 650 °C.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2021.111222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 14 Jul 2023Publisher:American Chemical Society (ACS) Funded by:NSF | PFI-TT: Next Generation F...NSF| PFI-TT: Next Generation Fuel Cell Catalysts for Efficient Energy ConversionChaitanya Mahajan; Vahid Hasannaeimi; Nico Neuber; Xiaowei Wang; Ralf Busch; Isabella Gallino; Sundeep Mukherjee;pmid: 36695713
Metallic glasses or amorphous alloys, with their excellent chemical stability, disordered atomic arrangement, and ability for thermoplastic nanostructuring, show promising performance toward a range of electrocatalytic reactions in proton-exchange membrane fuel cells. However, there are knowledge gaps and a distinct lack of understanding of the role of amorphous alloy chemistry in determining their catalytic activity. Here, we demonstrate the influence of alloy chemistry and the associated electronic structure on the hydrogen oxidation reaction (HOR) activity of a systematic series of Pt42.5-xPdxCu27Ni9.5P21 bulk metallic glasses (BMGs) with x = 0 to 42.5 at%. The HOR activity and electrochemical active surface area as a function of composition were in the form of volcano plots, with a peak around equal proportion of Pt and Pd. The lower relative electron work function and higher binding energy of the Pt core level explain the reduced charge-transfer resistance and improved electrocatalytic activity due to weakened chemisorption of protons in the mid-range composition. Density functional theory calculations show the lower free energy change and higher hydrogen adsorption density for these Pt42.5-xPdxCu27Ni9.5P21 BMGs, suggesting a synergistic effect from the presence of both noble metals, Pt and Pd.
ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.2c18266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.2c18266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu