- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Authors: G. Kemp; John Day; Alejandro Yáñez-Arancibia; Natalie Peyronnin;doi: 10.3390/w8030083
Deltas and estuaries built by the Mississippi/Atchafalaya River (MAR) in the United States and the Usumacinta/Grijalva River (UGR) in Mexico account for 80 percent of all Gulf of Mexico (GoM) coastal wetlands outside of Cuba. They rank first and second in freshwater discharge to the GoM and owe their natural resilience to a modular geomorphology that spreads risk across the coast-scape while providing ecosystem connectivity through shelf plumes that connect estuaries. Both river systems generate large plumes that strongly influence fisheries production over large areas of the northern and southern GoM continental shelves. Recent watershed process simulations (DLEM, MAPSS) driven by CMIP3 General Circulation Model (GCM) output indicate that the two systems face diverging futures, with the mean annual discharge of the MAR predicted to increase 11 to 63 percent, and that of the UGR to decline as much as 80 percent in the 21st century. MAR delta subsidence rates are the highest in North America, making it particularly susceptible to channel training interventions that have curtailed a natural propensity to shift course and deliver sediment to new areas, or to refurbish zones of high wetland loss. Undoing these restrictions in a controlled way has become the focus of a multi-billion-dollar effort to restore the MAR delta internally, while releasing fine-grained sediments trapped behind dams in the Great Plains has become an external goal. The UGR is, from an internal vulnerability standpoint, most threatened by land use changes that interfere with a deltaic architecture that is naturally resilient to sea level rise. This recognition has led to successful efforts in Mexico to protect still intact coastal systems against further anthropogenic impacts, as evidenced by establishment of the Centla Wetland Biosphere Preserve and the Terminos Lagoon Protected Area. The greatest threat to the UGR system, however, is an external one that will be imposed by the severe drying predicted for the entire Mesoamerican “climate change hot-spot”, a change that will necessitate much greater international involvement to protect threatened communities and lifeways as well as rare habitats and species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w8030083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w8030083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Authors: G. Kemp; John Day; Alejandro Yáñez-Arancibia; Natalie Peyronnin;doi: 10.3390/w8030083
Deltas and estuaries built by the Mississippi/Atchafalaya River (MAR) in the United States and the Usumacinta/Grijalva River (UGR) in Mexico account for 80 percent of all Gulf of Mexico (GoM) coastal wetlands outside of Cuba. They rank first and second in freshwater discharge to the GoM and owe their natural resilience to a modular geomorphology that spreads risk across the coast-scape while providing ecosystem connectivity through shelf plumes that connect estuaries. Both river systems generate large plumes that strongly influence fisheries production over large areas of the northern and southern GoM continental shelves. Recent watershed process simulations (DLEM, MAPSS) driven by CMIP3 General Circulation Model (GCM) output indicate that the two systems face diverging futures, with the mean annual discharge of the MAR predicted to increase 11 to 63 percent, and that of the UGR to decline as much as 80 percent in the 21st century. MAR delta subsidence rates are the highest in North America, making it particularly susceptible to channel training interventions that have curtailed a natural propensity to shift course and deliver sediment to new areas, or to refurbish zones of high wetland loss. Undoing these restrictions in a controlled way has become the focus of a multi-billion-dollar effort to restore the MAR delta internally, while releasing fine-grained sediments trapped behind dams in the Great Plains has become an external goal. The UGR is, from an internal vulnerability standpoint, most threatened by land use changes that interfere with a deltaic architecture that is naturally resilient to sea level rise. This recognition has led to successful efforts in Mexico to protect still intact coastal systems against further anthropogenic impacts, as evidenced by establishment of the Centla Wetland Biosphere Preserve and the Terminos Lagoon Protected Area. The greatest threat to the UGR system, however, is an external one that will be imposed by the severe drying predicted for the entire Mesoamerican “climate change hot-spot”, a change that will necessitate much greater international involvement to protect threatened communities and lifeways as well as rare habitats and species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w8030083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w8030083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu