- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Economidou D; Mattioli L; Ubaldi M; Lourdusamy A; Soverchia L; Hardiman G; CAMPOLONGO, Patrizia; CUOMO, VINCENZO; Ciccocioppo R.;The present study evaluated the consequences of perinatal Delta(9)-tetrahydrocannabinol (Delta(9)-THC) treatment (5 mg/kg/day by gavage), either alone or combined with ethanol (3% v/v as the only fluid available), on ethanol self-administration and alcohol-seeking behavior in rat adult offspring. Furthermore, the effect of the selective cannabinoid CB(1) receptor antagonist, SR-141716A, on ethanol self-administration and on reinstatement of ethanol-seeking behavior induced either by stress or conditioned drug-paired cues was evaluated in adult offspring of rats exposed to the same perinatal treatment. Lastly, microarray experiments were conducted to evaluate if perinatal treatment with Delta(9)-tetrahydrocannabinol, ethanol or their combination causes long-term changes in brain gene expression profile in rats. The results of microarray data analysis showed that 139, 112 and 170 genes were differentially expressed in the EtOH, Delta(9)-THC, or EtOH+Delta(9)-THC group, respectively. No differences in alcohol self-administration and alcohol seeking were observed between rat groups. Intraperitoneal (IP) administration of SR-141716A (0.3-3.0 mg/kg) significantly reduced lever pressing for ethanol and blocked conditioned reinstatement of alcohol seeking. At the same doses SR-141716A failed to block foot-shock stress-induced reinstatement of alcohol seeking. The results reveal that perinatal exposure to Delta(9)-THC ethanol or their combination results in evident changes in gene expression patterns. However, these treatments do not significantly affect vulnerability to ethanol abuse in adult offspring. On the other hand, the results obtained with SR-141716A emphasize that endocannabinoid mechanisms play a major role in ethanol self-administration, as well as in the reinstatement of ethanol-seeking behavior induced by conditioned cues, supporting the idea that cannabinoid CB(1) receptor antagonists may represent interesting agents for the pharmacotherapy of alcoholism.
Toxicology and Appli... arrow_drop_down Toxicology and Applied PharmacologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2007Data sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della ricerca- Università di Roma La SapienzaArticle . 2007Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.taap.2007.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Toxicology and Appli... arrow_drop_down Toxicology and Applied PharmacologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2007Data sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della ricerca- Università di Roma La SapienzaArticle . 2007Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.taap.2007.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | ADAMSEC| ADAMSEaston, Alanna C; Lucchesi, Walter; Lourdusamy, Anbarasu; Lenz, Bernd; Solati, Jalal; Golub, Yulia; Lewczuk, Piotr; Fernandes, Cathy; Desrivieres, Sylvane; Dawirs, Ralph R; Moll, Gunther H; Kornhuber, Johannes; Frank, Josef; Hoffmann, Per; Soyka, Michael; Kiefer, Falk; GESGA Consortium; Schumann, Gunter; Peter Giese, K; Müller, Christian P; Treutlein, Jens; Cichon, Sven; Ridinger, Monika; Mattheisen, Peter; Herms, Stefan; Wodarz, Norbert; Zill, Peter; Maier, Wolfgang; Mössner, Rainald; Gaebel, Wolfgang; Dahmen, Norbert; Scherbaum, Norbert; Schmäl, Christine; Steffens, Michael; Lucae, Susanne; Ising, Marcus; Müller-Myhsok, Bertram; Nöthen, Markus M; Mann, Karl; Rietschel, Marcella;The α-Ca(2+)/calmodulin-dependent protein kinase II (αCaMKII) is a crucial enzyme controlling plasticity in the brain. The autophosphorylation of αCaMKII works as a 'molecular memory' for a transient calcium activation, thereby accelerating learning. We investigated the role of αCaMKII autophosphorylation in the establishment of alcohol drinking as an addiction-related behavior in mice. We found that alcohol drinking was initially diminished in αCaMKII autophosphorylation-deficient αCaMKII(T286A) mice, but could be established at wild-type level after repeated withdrawals. The locomotor activating effects of a low-dose alcohol (2 g/kg) were absent in αCaMKII(T286A) mice, whereas the sedating effects of high-dose (3.5 g/kg) were preserved after acute and subchronic administration. The in vivo microdialysis revealed that αCaMKII(T286A) mice showed no dopamine (DA) response in the nucleus accumbens to acute or subchronic alcohol administration, but enhanced serotonin (5-HT) responses in the prefrontal cortex. The attenuated DA response in αCaMKII(T286A) mice was in line with altered c-Fos activation in the ventral tegmental area after acute and subchronic alcohol administration. In order to compare findings in mice with the human condition, we tested 23 single-nucleotide polymorphisms (SNPs) in the CAMK2A gene for their association with alcohol dependence in a population of 1333 male patients with severe alcohol dependence and 939 controls. We found seven significant associations between CAMK2A SNPs and alcohol dependence, one of which in an autophosphorylation-related area of the gene. Together, our data suggest αCaMKII autophosphorylation as a facilitating mechanism in the establishment of alcohol drinking behavior with changing the DA-5-HT balance as a putative mechanism.
Neuropsychopharmacol... arrow_drop_down King's College, London: Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-EssenUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2013.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Neuropsychopharmacol... arrow_drop_down King's College, London: Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-EssenUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2013.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Spain, United Kingdom, SpainPublisher:Springer Science and Business Media LLC Authors: Anbarasu Lourdusamy; Alberto Fernández-Medarde; Alanna C. Easton; Johannes Kornhuber; +8 AuthorsAnbarasu Lourdusamy; Alberto Fernández-Medarde; Alanna C. Easton; Johannes Kornhuber; Teresa Biermann; Christian P. Müller; Christian P. Müller; Andrea Rotter; Gunter Schumann; Eugenio Santos; Sylvane Desrivières; Cathy Fernandes;Alcohol addiction is a major psychiatric disease, and yet, the underlying molecular adaptations in the brain remain unclear. Recent evidence suggests a functional role for the ras-specific guanine-nucleotide releasing factor 2 (Rasgrf2) in alcoholism. Rasgrf2(-/-) mice consume less alcohol and show entirely absent dopamine responses to an alcohol challenge compared to wild types (WT).In order to further investigate how Rasgrf2 modifies the acute and subchronic effects of alcohol in the brain, we investigated its effects on the noradrenergic and serotonergic systems.We measured noradrenaline and serotonin activity in the brain by in vivo microdialysis and RNA expression by chip analysis and RT-PCR after acute and sub-chronic alcohol exposure in Rasgrf2(-/-) and WT mice.In vivo microdialysis showed a significantly reduced noradrenergic response and an absent serotonergic response in the nucleus accumbens (NAcc) and caudate putamen (CPu) after an alcohol challenge in Rasgrf2(-/-) mice. A co-expression analysis showed that there is a high correlation between Rasgrf2 and α2 adrenoceptor RNA expression in the ventral striatum in naïve animals. Accordingly, we further assessed the role of Rasgrf2 in the response of the noradrenergic system to subchronic alcohol exposure. A decrease in β1 adrenoceptor gene expression was seen in Rasgrf2(+/+), but not Rasgrf2(-/-) mice following alcohol exposure. Conversely, alcohol resulted in a decrease in both β2 and α2 adrenoceptor gene expression in knockout but not WT Rasgrf2 mice.These findings suggest that adaptations in the noradrenergic system contribute to the Rasgrf2 enhanced risk of alcoholism.
Psychopharmacology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-014-3562-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 25visibility views 25 download downloads 106 Powered bymore_vert Psychopharmacology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-014-3562-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Spain, Spain, United KingdomPublisher:Elsevier BV Johannes Kornhuber; Christian P. Müller; Christian P. Müller; Gunter Schumann; Teresa Biermann; Alberto Fernández-Medarde; Alanna C. Easton; Sylvane Desrivières; Anbarasu Lourdusamy; Eugenio Santos; Cathy Fernandes; Andrea Rotter;Alcohol abuse leads to serious health problems with no effective treatment available. Recent evidence suggests a role for ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) in alcoholism. Rasgrf2 is a calcium sensor and MAPK/ERK activating protein, which has been linked to neurotransmitter release and monoaminergic receptor adaptations. Rasgrf2 knock out (KO) mice do not develop a dopamine response in the nucleus accumbens after an alcohol challenge and show a reduced consumption of alcohol. The present study aims to further characterise the role of Rasgrf2 in dopaminergic activation beyond the nucleus accumbens following alcohol treatment. Using in vivo microdialysis we found that alcohol induces alterations in dopamine levels in the dorsal striatum between wildtype (WT) and Rasgrf2 KO mice. There was no difference in the expression of dopamine transporter (DAT), dopamine receptor regulating factor (DRRF), or dopamine D2 receptor (DRD2) mRNA in the brain between Rasgrf2 KO and WT mice. After sub-chronic alcohol treatment, DAT and DRRF, but not DRD2 mRNA expression differed between WT and Rasgrf2 KO mice. Brain adaptations were positively correlated with splenic expression levels. These data suggest that Rasgrf2 controls dopaminergic signalling and adaptations to alcohol also in other brain regions, beyond the nucleus accumbens.
Brain Research Bulle... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.brainresbull.2014.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 157 Powered bymore_vert Brain Research Bulle... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.brainresbull.2014.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, United Kingdom, Spain, Australia, GermanyPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:EC | EU-AIMS, EC | SMILE, EC | ADAMSEC| EU-AIMS ,EC| SMILE ,EC| ADAMSDavid Stacey; Tomáš Paus; Tomáš Paus; Bernd Ittermann; Frauke Nees; Tianye Jia; Andreas Heinz; Marcella Rietschel; Karl Mann; Matthieu Maroteaux; Ainhoa Bilbao; Anbarasu Lourdusamy; Jean-Luc Martinot; Jean-Luc Martinot; Hugh Garavan; Hugh Garavan; Jean-Antoine Girault; Alberto Fernández-Medarde; Alanna C. Easton; Eva Loth; Charlotte Nymberg; Tobias Banaschewski; Patricia J. Conrod; Patricia J. Conrod; Jürgen Gallinat; Eugenio Santos; Mira Fauth-Bühler; Gareth J. Barker; Paul Elliott; Sylvane Desrivières; Miklós Palkovits; Marjo-Riitta Järvelin; Marjo-Riitta Järvelin; Marjo-Riitta Järvelin; Mark Lathrop; Zdenka Pausova; Herta Flor; Barbara Ruggeri; Claire Lawrence; Gunter Schumann; Michael N. Smolka; Oliver Staehlin; Sophie Longueville; Arun L.W. Bokde; Christian P. Müller; Christian P. Müller; Manuel Mameli; Fabiana M. Carvalho; Christian Büchel; Wolfgang H. Sommer; Rainer Spanagel;The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 ( RASGRF2 ) gene, encoding a protein that mediates Ca 2+ -dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2 −/− mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2 −/− mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I A potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.
Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2012Data sources: European Research Council (ERC)King's College, London: Research PortalArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: Crossrefhttp://dx.doi.org/10.1073/pnas...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1211844110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2012Data sources: European Research Council (ERC)King's College, London: Research PortalArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: Crossrefhttp://dx.doi.org/10.1073/pnas...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1211844110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Germany, PolandPublisher:Springer Science and Business Media LLC Funded by:DFGDFGLiubov S. Kalinichenko; Thomas Stöckl; Johannes Kornhuber; Janine Beckmann; Erich Gulbins; Erich Gulbins; Jens Fuchser; Christian Büttner; Sabine E. Huber; Eva Sprenger; Volker Eulenburg; Matthias Witt; Arif B. Ekici; Małgorzata Filip; Anbarasu Lourdusamy; Lucyna Pomierny-Chamioło; Christian P. Müller; Martin Reichel; Marc Praetner; Irena Smaga; Christiane Mühle; Jens Tiesel; Davide Amato; Bartosz Pomierny;Alcohol is a widely consumed drug that can lead to addiction and severe brain damage. However, alcohol is also used as self-medication for psychiatric problems, such as depression, frequently resulting in depression-alcoholism comorbidity. Here, we identify the first molecular mechanism for alcohol use with the goal to self-medicate and ameliorate the behavioral symptoms of a genetically induced innate depression. An induced over-expression of acid sphingomyelinase (ASM), as was observed in depressed patients, enhanced the consumption of alcohol in a mouse model of depression. ASM hyperactivity facilitates the establishment of the conditioned behavioral effects of alcohol, and thus drug memories. Opposite effects on drinking and alcohol reward learning were observed in animals with reduced ASM function. Importantly, free-choice alcohol drinking-but not forced alcohol exposure-reduces depression-like behavior selectively in depressed animals through the normalization of brain ASM activity. No such effects were observed in normal mice. ASM hyperactivity caused sphingolipid and subsequent monoamine transmitter hypo-activity in the brain. Free-choice alcohol drinking restores nucleus accumbens sphingolipid- and monoamine homeostasis selectively in depressed mice. A gene expression analysis suggested strong control of ASM on the expression of genes related to the regulation of pH, ion transmembrane transport, behavioral fear response, neuroprotection and neuropeptide signaling pathways. These findings suggest that the paradoxical antidepressant effects of alcohol in depressed organisms are mediated by ASM and its control of sphingolipid homeostasis. Both emerge as a new treatment target specifically for depression-induced alcoholism.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00401-016-1658-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00401-016-1658-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 ItalyPublisher:Wiley CICCOCIOPPO, Roberto; ECONOMIDOU D; CIPPITELLI A; CUCCULELLI M; UBALDI, Massimo; SOVERCHIA L; LOURDUSAMY A; MASSI, Maurizio;ABSTRACTThe present article provides an up‐to‐date review summarizing almost 18 years of research in genetically selected Marchigian Sardinian alcohol‐preferring (msP) rats. The results of this work demonstrate that msP rats have natural preference for ethanol characterized by a spontaneous binge‐type of drinking that leads to pharmacologically significant blood ethanol levels. This rat line is highly vulnerable to relapse and presentation of stimuli predictive of alcohol availability or foot‐shock stress can reinstate extinguished drug‐seeking up to 8 months from the last alcohol experience. The msP rat is highly sensitive to stress, shows an anxious phenotype and has depressive‐like symptoms that recover following ethanol drinking. Interestingly, these animals have an up‐regulated corticotrophin releasing factor (CRF) receptor 1 system. Clinical studies have shown that alcoholic patients often drink ethanol in the attempt to self‐medicate from negative affective states and to search for anxiety relief. We propose that msP rats represent an animal model that largely mimics the human alcoholic population that due to poor ability to engage in stress‐coping strategies drink ethanol as a tension relief strategy and for self‐medication purposes.
Addiction Biology arrow_drop_down Addiction BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1369-1600.2006.00032.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 153 citations 153 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Addiction Biology arrow_drop_down Addiction BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1369-1600.2006.00032.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Germany, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | ADAMSEC| ADAMSWolfgang Maier; Gunter Schumann; Gunter Schumann; Norbert Wodarz; Marcella Rietschel; Manfred Laucht; Sylvane Desrivières; Mark Lathrop; Toni-Kim Clarke; Ulrich S. Zimmermann; Anbarasu Lourdusamy; Monika Ridinger;Alcohol abuse and dependence have proven to be complex genetic traits that are influenced by environmental factors. Primate and human studies have shown that early life stress increases the propensity for alcohol abuse in later life. The reinforcing properties of alcohol are mediated by dopaminergic signaling; however, there is little evidence to indicate how stress alters alcohol reinforcement. KCNJ6 (the gene encoding G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2)) is a brain expressed potassium channel with inhibitory effects on dopaminergic tone. The properties of GIRK2 have been shown to be enhanced by the stress peptide corticotrophin-releasing hormone. Therefore, we sought to examine the role of KCNJ6 polymorphisms in adult alcohol dependence and stress-related alcohol abuse in adolescents. We selected 11 SNPs in the promoter region of KCNJ6, which were genotyped in 1152 adult alcohol dependents and 1203 controls. One SNP, rs2836016, was found to be associated with alcohol dependence (p=0.01, false discovery rate). We then assessed rs2836016 in an adolescent sample of 261 subjects, which were characterized for early life stress and adolescent hazardous drinking, defined using the Alcohol Use Disorders Identification Test (AUDIT), to examine gene-environment interactions. In the adolescent sample, the risk genotype of rs2836016 was significantly associated with increased AUDIT scores, but only in those individuals exposed to high levels of psychosocial stress in early life (p=0.01). Our findings show that KCNJ6 is associated with alcohol dependence and may moderate the effect of early psychosocial stress on risky alcohol drinking in adolescents. We have identified a candidate gene for future studies investigating a possible functional link between the response to stress and alcohol reinforcement.
Neuropsychopharmacol... arrow_drop_down Publikationsserver der Universität PotsdamArticle . 2011Data sources: Publikationsserver der Universität PotsdamKing's College, London: Research PortalArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2010.247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 38 citations 38 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Neuropsychopharmacol... arrow_drop_down Publikationsserver der Universität PotsdamArticle . 2011Data sources: Publikationsserver der Universität PotsdamKing's College, London: Research PortalArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2010.247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Economidou D; Mattioli L; Ubaldi M; Lourdusamy A; Soverchia L; Hardiman G; CAMPOLONGO, Patrizia; CUOMO, VINCENZO; Ciccocioppo R.;The present study evaluated the consequences of perinatal Delta(9)-tetrahydrocannabinol (Delta(9)-THC) treatment (5 mg/kg/day by gavage), either alone or combined with ethanol (3% v/v as the only fluid available), on ethanol self-administration and alcohol-seeking behavior in rat adult offspring. Furthermore, the effect of the selective cannabinoid CB(1) receptor antagonist, SR-141716A, on ethanol self-administration and on reinstatement of ethanol-seeking behavior induced either by stress or conditioned drug-paired cues was evaluated in adult offspring of rats exposed to the same perinatal treatment. Lastly, microarray experiments were conducted to evaluate if perinatal treatment with Delta(9)-tetrahydrocannabinol, ethanol or their combination causes long-term changes in brain gene expression profile in rats. The results of microarray data analysis showed that 139, 112 and 170 genes were differentially expressed in the EtOH, Delta(9)-THC, or EtOH+Delta(9)-THC group, respectively. No differences in alcohol self-administration and alcohol seeking were observed between rat groups. Intraperitoneal (IP) administration of SR-141716A (0.3-3.0 mg/kg) significantly reduced lever pressing for ethanol and blocked conditioned reinstatement of alcohol seeking. At the same doses SR-141716A failed to block foot-shock stress-induced reinstatement of alcohol seeking. The results reveal that perinatal exposure to Delta(9)-THC ethanol or their combination results in evident changes in gene expression patterns. However, these treatments do not significantly affect vulnerability to ethanol abuse in adult offspring. On the other hand, the results obtained with SR-141716A emphasize that endocannabinoid mechanisms play a major role in ethanol self-administration, as well as in the reinstatement of ethanol-seeking behavior induced by conditioned cues, supporting the idea that cannabinoid CB(1) receptor antagonists may represent interesting agents for the pharmacotherapy of alcoholism.
Toxicology and Appli... arrow_drop_down Toxicology and Applied PharmacologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2007Data sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della ricerca- Università di Roma La SapienzaArticle . 2007Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.taap.2007.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Toxicology and Appli... arrow_drop_down Toxicology and Applied PharmacologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca- Università di Roma La SapienzaArticle . 2007Data sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della ricerca- Università di Roma La SapienzaArticle . 2007Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.taap.2007.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | ADAMSEC| ADAMSEaston, Alanna C; Lucchesi, Walter; Lourdusamy, Anbarasu; Lenz, Bernd; Solati, Jalal; Golub, Yulia; Lewczuk, Piotr; Fernandes, Cathy; Desrivieres, Sylvane; Dawirs, Ralph R; Moll, Gunther H; Kornhuber, Johannes; Frank, Josef; Hoffmann, Per; Soyka, Michael; Kiefer, Falk; GESGA Consortium; Schumann, Gunter; Peter Giese, K; Müller, Christian P; Treutlein, Jens; Cichon, Sven; Ridinger, Monika; Mattheisen, Peter; Herms, Stefan; Wodarz, Norbert; Zill, Peter; Maier, Wolfgang; Mössner, Rainald; Gaebel, Wolfgang; Dahmen, Norbert; Scherbaum, Norbert; Schmäl, Christine; Steffens, Michael; Lucae, Susanne; Ising, Marcus; Müller-Myhsok, Bertram; Nöthen, Markus M; Mann, Karl; Rietschel, Marcella;The α-Ca(2+)/calmodulin-dependent protein kinase II (αCaMKII) is a crucial enzyme controlling plasticity in the brain. The autophosphorylation of αCaMKII works as a 'molecular memory' for a transient calcium activation, thereby accelerating learning. We investigated the role of αCaMKII autophosphorylation in the establishment of alcohol drinking as an addiction-related behavior in mice. We found that alcohol drinking was initially diminished in αCaMKII autophosphorylation-deficient αCaMKII(T286A) mice, but could be established at wild-type level after repeated withdrawals. The locomotor activating effects of a low-dose alcohol (2 g/kg) were absent in αCaMKII(T286A) mice, whereas the sedating effects of high-dose (3.5 g/kg) were preserved after acute and subchronic administration. The in vivo microdialysis revealed that αCaMKII(T286A) mice showed no dopamine (DA) response in the nucleus accumbens to acute or subchronic alcohol administration, but enhanced serotonin (5-HT) responses in the prefrontal cortex. The attenuated DA response in αCaMKII(T286A) mice was in line with altered c-Fos activation in the ventral tegmental area after acute and subchronic alcohol administration. In order to compare findings in mice with the human condition, we tested 23 single-nucleotide polymorphisms (SNPs) in the CAMK2A gene for their association with alcohol dependence in a population of 1333 male patients with severe alcohol dependence and 939 controls. We found seven significant associations between CAMK2A SNPs and alcohol dependence, one of which in an autophosphorylation-related area of the gene. Together, our data suggest αCaMKII autophosphorylation as a facilitating mechanism in the establishment of alcohol drinking behavior with changing the DA-5-HT balance as a putative mechanism.
Neuropsychopharmacol... arrow_drop_down King's College, London: Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-EssenUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2013.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Neuropsychopharmacol... arrow_drop_down King's College, London: Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-EssenUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2013Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2013.188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Spain, United Kingdom, SpainPublisher:Springer Science and Business Media LLC Authors: Anbarasu Lourdusamy; Alberto Fernández-Medarde; Alanna C. Easton; Johannes Kornhuber; +8 AuthorsAnbarasu Lourdusamy; Alberto Fernández-Medarde; Alanna C. Easton; Johannes Kornhuber; Teresa Biermann; Christian P. Müller; Christian P. Müller; Andrea Rotter; Gunter Schumann; Eugenio Santos; Sylvane Desrivières; Cathy Fernandes;Alcohol addiction is a major psychiatric disease, and yet, the underlying molecular adaptations in the brain remain unclear. Recent evidence suggests a functional role for the ras-specific guanine-nucleotide releasing factor 2 (Rasgrf2) in alcoholism. Rasgrf2(-/-) mice consume less alcohol and show entirely absent dopamine responses to an alcohol challenge compared to wild types (WT).In order to further investigate how Rasgrf2 modifies the acute and subchronic effects of alcohol in the brain, we investigated its effects on the noradrenergic and serotonergic systems.We measured noradrenaline and serotonin activity in the brain by in vivo microdialysis and RNA expression by chip analysis and RT-PCR after acute and sub-chronic alcohol exposure in Rasgrf2(-/-) and WT mice.In vivo microdialysis showed a significantly reduced noradrenergic response and an absent serotonergic response in the nucleus accumbens (NAcc) and caudate putamen (CPu) after an alcohol challenge in Rasgrf2(-/-) mice. A co-expression analysis showed that there is a high correlation between Rasgrf2 and α2 adrenoceptor RNA expression in the ventral striatum in naïve animals. Accordingly, we further assessed the role of Rasgrf2 in the response of the noradrenergic system to subchronic alcohol exposure. A decrease in β1 adrenoceptor gene expression was seen in Rasgrf2(+/+), but not Rasgrf2(-/-) mice following alcohol exposure. Conversely, alcohol resulted in a decrease in both β2 and α2 adrenoceptor gene expression in knockout but not WT Rasgrf2 mice.These findings suggest that adaptations in the noradrenergic system contribute to the Rasgrf2 enhanced risk of alcoholism.
Psychopharmacology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-014-3562-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 25visibility views 25 download downloads 106 Powered bymore_vert Psychopharmacology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-014-3562-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Spain, Spain, United KingdomPublisher:Elsevier BV Johannes Kornhuber; Christian P. Müller; Christian P. Müller; Gunter Schumann; Teresa Biermann; Alberto Fernández-Medarde; Alanna C. Easton; Sylvane Desrivières; Anbarasu Lourdusamy; Eugenio Santos; Cathy Fernandes; Andrea Rotter;Alcohol abuse leads to serious health problems with no effective treatment available. Recent evidence suggests a role for ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) in alcoholism. Rasgrf2 is a calcium sensor and MAPK/ERK activating protein, which has been linked to neurotransmitter release and monoaminergic receptor adaptations. Rasgrf2 knock out (KO) mice do not develop a dopamine response in the nucleus accumbens after an alcohol challenge and show a reduced consumption of alcohol. The present study aims to further characterise the role of Rasgrf2 in dopaminergic activation beyond the nucleus accumbens following alcohol treatment. Using in vivo microdialysis we found that alcohol induces alterations in dopamine levels in the dorsal striatum between wildtype (WT) and Rasgrf2 KO mice. There was no difference in the expression of dopamine transporter (DAT), dopamine receptor regulating factor (DRRF), or dopamine D2 receptor (DRD2) mRNA in the brain between Rasgrf2 KO and WT mice. After sub-chronic alcohol treatment, DAT and DRRF, but not DRD2 mRNA expression differed between WT and Rasgrf2 KO mice. Brain adaptations were positively correlated with splenic expression levels. These data suggest that Rasgrf2 controls dopaminergic signalling and adaptations to alcohol also in other brain regions, beyond the nucleus accumbens.
Brain Research Bulle... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.brainresbull.2014.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 157 Powered bymore_vert Brain Research Bulle... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.brainresbull.2014.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, United Kingdom, Spain, Australia, GermanyPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:EC | EU-AIMS, EC | SMILE, EC | ADAMSEC| EU-AIMS ,EC| SMILE ,EC| ADAMSDavid Stacey; Tomáš Paus; Tomáš Paus; Bernd Ittermann; Frauke Nees; Tianye Jia; Andreas Heinz; Marcella Rietschel; Karl Mann; Matthieu Maroteaux; Ainhoa Bilbao; Anbarasu Lourdusamy; Jean-Luc Martinot; Jean-Luc Martinot; Hugh Garavan; Hugh Garavan; Jean-Antoine Girault; Alberto Fernández-Medarde; Alanna C. Easton; Eva Loth; Charlotte Nymberg; Tobias Banaschewski; Patricia J. Conrod; Patricia J. Conrod; Jürgen Gallinat; Eugenio Santos; Mira Fauth-Bühler; Gareth J. Barker; Paul Elliott; Sylvane Desrivières; Miklós Palkovits; Marjo-Riitta Järvelin; Marjo-Riitta Järvelin; Marjo-Riitta Järvelin; Mark Lathrop; Zdenka Pausova; Herta Flor; Barbara Ruggeri; Claire Lawrence; Gunter Schumann; Michael N. Smolka; Oliver Staehlin; Sophie Longueville; Arun L.W. Bokde; Christian P. Müller; Christian P. Müller; Manuel Mameli; Fabiana M. Carvalho; Christian Büchel; Wolfgang H. Sommer; Rainer Spanagel;The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 ( RASGRF2 ) gene, encoding a protein that mediates Ca 2+ -dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2 −/− mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2 −/− mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I A potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.
Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2012Data sources: European Research Council (ERC)King's College, London: Research PortalArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: Crossrefhttp://dx.doi.org/10.1073/pnas...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1211844110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2017Proceedings of the National Academy of SciencesArticle . 2012Data sources: European Research Council (ERC)King's College, London: Research PortalArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2012 . Peer-reviewedData sources: Crossrefhttp://dx.doi.org/10.1073/pnas...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1211844110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Germany, PolandPublisher:Springer Science and Business Media LLC Funded by:DFGDFGLiubov S. Kalinichenko; Thomas Stöckl; Johannes Kornhuber; Janine Beckmann; Erich Gulbins; Erich Gulbins; Jens Fuchser; Christian Büttner; Sabine E. Huber; Eva Sprenger; Volker Eulenburg; Matthias Witt; Arif B. Ekici; Małgorzata Filip; Anbarasu Lourdusamy; Lucyna Pomierny-Chamioło; Christian P. Müller; Martin Reichel; Marc Praetner; Irena Smaga; Christiane Mühle; Jens Tiesel; Davide Amato; Bartosz Pomierny;Alcohol is a widely consumed drug that can lead to addiction and severe brain damage. However, alcohol is also used as self-medication for psychiatric problems, such as depression, frequently resulting in depression-alcoholism comorbidity. Here, we identify the first molecular mechanism for alcohol use with the goal to self-medicate and ameliorate the behavioral symptoms of a genetically induced innate depression. An induced over-expression of acid sphingomyelinase (ASM), as was observed in depressed patients, enhanced the consumption of alcohol in a mouse model of depression. ASM hyperactivity facilitates the establishment of the conditioned behavioral effects of alcohol, and thus drug memories. Opposite effects on drinking and alcohol reward learning were observed in animals with reduced ASM function. Importantly, free-choice alcohol drinking-but not forced alcohol exposure-reduces depression-like behavior selectively in depressed animals through the normalization of brain ASM activity. No such effects were observed in normal mice. ASM hyperactivity caused sphingolipid and subsequent monoamine transmitter hypo-activity in the brain. Free-choice alcohol drinking restores nucleus accumbens sphingolipid- and monoamine homeostasis selectively in depressed mice. A gene expression analysis suggested strong control of ASM on the expression of genes related to the regulation of pH, ion transmembrane transport, behavioral fear response, neuroprotection and neuropeptide signaling pathways. These findings suggest that the paradoxical antidepressant effects of alcohol in depressed organisms are mediated by ASM and its control of sphingolipid homeostasis. Both emerge as a new treatment target specifically for depression-induced alcoholism.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00401-016-1658-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00401-016-1658-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 ItalyPublisher:Wiley CICCOCIOPPO, Roberto; ECONOMIDOU D; CIPPITELLI A; CUCCULELLI M; UBALDI, Massimo; SOVERCHIA L; LOURDUSAMY A; MASSI, Maurizio;ABSTRACTThe present article provides an up‐to‐date review summarizing almost 18 years of research in genetically selected Marchigian Sardinian alcohol‐preferring (msP) rats. The results of this work demonstrate that msP rats have natural preference for ethanol characterized by a spontaneous binge‐type of drinking that leads to pharmacologically significant blood ethanol levels. This rat line is highly vulnerable to relapse and presentation of stimuli predictive of alcohol availability or foot‐shock stress can reinstate extinguished drug‐seeking up to 8 months from the last alcohol experience. The msP rat is highly sensitive to stress, shows an anxious phenotype and has depressive‐like symptoms that recover following ethanol drinking. Interestingly, these animals have an up‐regulated corticotrophin releasing factor (CRF) receptor 1 system. Clinical studies have shown that alcoholic patients often drink ethanol in the attempt to self‐medicate from negative affective states and to search for anxiety relief. We propose that msP rats represent an animal model that largely mimics the human alcoholic population that due to poor ability to engage in stress‐coping strategies drink ethanol as a tension relief strategy and for self‐medication purposes.
Addiction Biology arrow_drop_down Addiction BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1369-1600.2006.00032.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 153 citations 153 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Addiction Biology arrow_drop_down Addiction BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1369-1600.2006.00032.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Germany, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | ADAMSEC| ADAMSWolfgang Maier; Gunter Schumann; Gunter Schumann; Norbert Wodarz; Marcella Rietschel; Manfred Laucht; Sylvane Desrivières; Mark Lathrop; Toni-Kim Clarke; Ulrich S. Zimmermann; Anbarasu Lourdusamy; Monika Ridinger;Alcohol abuse and dependence have proven to be complex genetic traits that are influenced by environmental factors. Primate and human studies have shown that early life stress increases the propensity for alcohol abuse in later life. The reinforcing properties of alcohol are mediated by dopaminergic signaling; however, there is little evidence to indicate how stress alters alcohol reinforcement. KCNJ6 (the gene encoding G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2)) is a brain expressed potassium channel with inhibitory effects on dopaminergic tone. The properties of GIRK2 have been shown to be enhanced by the stress peptide corticotrophin-releasing hormone. Therefore, we sought to examine the role of KCNJ6 polymorphisms in adult alcohol dependence and stress-related alcohol abuse in adolescents. We selected 11 SNPs in the promoter region of KCNJ6, which were genotyped in 1152 adult alcohol dependents and 1203 controls. One SNP, rs2836016, was found to be associated with alcohol dependence (p=0.01, false discovery rate). We then assessed rs2836016 in an adolescent sample of 261 subjects, which were characterized for early life stress and adolescent hazardous drinking, defined using the Alcohol Use Disorders Identification Test (AUDIT), to examine gene-environment interactions. In the adolescent sample, the risk genotype of rs2836016 was significantly associated with increased AUDIT scores, but only in those individuals exposed to high levels of psychosocial stress in early life (p=0.01). Our findings show that KCNJ6 is associated with alcohol dependence and may moderate the effect of early psychosocial stress on risky alcohol drinking in adolescents. We have identified a candidate gene for future studies investigating a possible functional link between the response to stress and alcohol reinforcement.
Neuropsychopharmacol... arrow_drop_down Publikationsserver der Universität PotsdamArticle . 2011Data sources: Publikationsserver der Universität PotsdamKing's College, London: Research PortalArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2010.247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 38 citations 38 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Neuropsychopharmacol... arrow_drop_down Publikationsserver der Universität PotsdamArticle . 2011Data sources: Publikationsserver der Universität PotsdamKing's College, London: Research PortalArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2010.247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu