- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Dandan Chen; Gang-Ping Xue; C. Lynne McIntyre; Shoucheng Chai;pmid: 29079898
TaRNAC1 is a constitutively and predominantly root-expressed NAC transcription factor. TaRNAC1 overexpression in wheat roots confers increased root length, biomass and drought tolerance and improved grain yield under water limitation. A large and deep root system is an important trait for yield sustainability of dryland cereal crops in drought-prone environments. This study investigated the role of a predominantly root-expressed NAC transcription factor from wheat (TaRNAC1) in the root growth. Expression analysis showed that TaRNAC1 was a constitutively expressed gene with high level expression in the roots and was not drought-upregulated. Overexpression of TaRNAC1 in wheat using a predominantly root-expressed promoter resulted in increased root length and biomass observed at the early growth stage and a marked increase in the maturity root biomass with dry root weight of > 70% higher than that of the wild type plants. Analysis of some root growth-related genes revealed that the expression level of GA3-ox2, which encodes GIBBERELLIN 3-OXIDASE catalysing the conversion of inactive gibberellin (GA) to active GA, was elevated in the roots of transgenic wheat. TaRNAC1 overexpressing transgenic wheat showed more dehydration tolerance under polyethylene glycol (PEG) treatment and produced more aboveground biomass and grain under water-limited conditions than the wild type plants. These data suggest that TaRNAC1 may play a role in root growth and be used as a molecular tool for potential enlargement of root system in wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00299-017-2224-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00299-017-2224-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Dandan Chen; Gang-Ping Xue; C. Lynne McIntyre; Shoucheng Chai;pmid: 29079898
TaRNAC1 is a constitutively and predominantly root-expressed NAC transcription factor. TaRNAC1 overexpression in wheat roots confers increased root length, biomass and drought tolerance and improved grain yield under water limitation. A large and deep root system is an important trait for yield sustainability of dryland cereal crops in drought-prone environments. This study investigated the role of a predominantly root-expressed NAC transcription factor from wheat (TaRNAC1) in the root growth. Expression analysis showed that TaRNAC1 was a constitutively expressed gene with high level expression in the roots and was not drought-upregulated. Overexpression of TaRNAC1 in wheat using a predominantly root-expressed promoter resulted in increased root length and biomass observed at the early growth stage and a marked increase in the maturity root biomass with dry root weight of > 70% higher than that of the wild type plants. Analysis of some root growth-related genes revealed that the expression level of GA3-ox2, which encodes GIBBERELLIN 3-OXIDASE catalysing the conversion of inactive gibberellin (GA) to active GA, was elevated in the roots of transgenic wheat. TaRNAC1 overexpressing transgenic wheat showed more dehydration tolerance under polyethylene glycol (PEG) treatment and produced more aboveground biomass and grain under water-limited conditions than the wild type plants. These data suggest that TaRNAC1 may play a role in root growth and be used as a molecular tool for potential enlargement of root system in wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00299-017-2224-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00299-017-2224-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Oxford University Press (OUP) Dandan Chen; Terese Richardson; Anne L. Rae; C. Lynne McIntyre; Shoucheng Chai; Gang-Ping Xue;doi: 10.1093/pcp/pcw126
pmid: 27440550
A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pcp/pcw126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pcp/pcw126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Oxford University Press (OUP) Dandan Chen; Terese Richardson; Anne L. Rae; C. Lynne McIntyre; Shoucheng Chai; Gang-Ping Xue;doi: 10.1093/pcp/pcw126
pmid: 27440550
A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pcp/pcw126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pcp/pcw126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2021 Germany, United Kingdom, Austria, Netherlands, France, France, Denmark, SwitzerlandPublisher:Elsevier BV Johan Rockström; Johan Rockström; Svend Christensen; Paul C. West; Brett A. Bryan; Alexander Mathys; Joost Vervoort; Pete Smith; Stephen A. Wood; Stephen A. Wood; Benjamin Leon Bodirsky; Cecile Godde; Mark T. van Wijk; Alejandro Parodi; Andy Jarvis; Ana Maria Loboguerrero; Bruce M. Campbell; Bruce M. Campbell; Sonja J. Vermeulen; Michael Clark; Philip K. Thornton; Rebecca Nelson; Jessica R. Bogard; Jessica Fanzo; Hugo Valin; Hannah H. E. van Zanten; Mario Herrero; Andy Hall; Rosamond L. Naylor; Katie D. Ricketts; Jeda Palmer; Alexander Popp; Prajal Pradhan; Ilje Pikaar; Christopher B. Barrett; Tim G. Benton; Graham D. Bonnett; Michael Obersteiner; Michael Obersteiner; C. Lynne McIntyre; Daniel Mason-D'Croz;doi: 10.1016/s2542-5196(20)30277-1 , 10.3929/ethz-b-000455479 , 10.60692/pepck-a0v37 , 10.60692/46p88-kff52
pmid: 33306994
handle: 10568/110853 , 2164/15923
doi: 10.1016/s2542-5196(20)30277-1 , 10.3929/ethz-b-000455479 , 10.60692/pepck-a0v37 , 10.60692/46p88-kff52
pmid: 33306994
handle: 10568/110853 , 2164/15923
Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level. The Lancet Planetary Health, 5 (1) ISSN:2542-5196
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/110853Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/15923Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30277-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 167 citations 167 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/110853Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/15923Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30277-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2021 Germany, United Kingdom, Austria, Netherlands, France, France, Denmark, SwitzerlandPublisher:Elsevier BV Johan Rockström; Johan Rockström; Svend Christensen; Paul C. West; Brett A. Bryan; Alexander Mathys; Joost Vervoort; Pete Smith; Stephen A. Wood; Stephen A. Wood; Benjamin Leon Bodirsky; Cecile Godde; Mark T. van Wijk; Alejandro Parodi; Andy Jarvis; Ana Maria Loboguerrero; Bruce M. Campbell; Bruce M. Campbell; Sonja J. Vermeulen; Michael Clark; Philip K. Thornton; Rebecca Nelson; Jessica R. Bogard; Jessica Fanzo; Hugo Valin; Hannah H. E. van Zanten; Mario Herrero; Andy Hall; Rosamond L. Naylor; Katie D. Ricketts; Jeda Palmer; Alexander Popp; Prajal Pradhan; Ilje Pikaar; Christopher B. Barrett; Tim G. Benton; Graham D. Bonnett; Michael Obersteiner; Michael Obersteiner; C. Lynne McIntyre; Daniel Mason-D'Croz;doi: 10.1016/s2542-5196(20)30277-1 , 10.3929/ethz-b-000455479 , 10.60692/pepck-a0v37 , 10.60692/46p88-kff52
pmid: 33306994
handle: 10568/110853 , 2164/15923
doi: 10.1016/s2542-5196(20)30277-1 , 10.3929/ethz-b-000455479 , 10.60692/pepck-a0v37 , 10.60692/46p88-kff52
pmid: 33306994
handle: 10568/110853 , 2164/15923
Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level. The Lancet Planetary Health, 5 (1) ISSN:2542-5196
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/110853Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/15923Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30277-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 167 citations 167 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/110853Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/15923Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30277-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Springer Science and Business Media LLC McIntyre, C.Lynne; Mathews, Ky L.; Rattey, Allan; Chapman, Scott C.; Drenth, Janneke; Ghaderi, Mohammadghader; Reynolds, Matthew; Shorter, Ray;pmid: 19865806
Grain yield and grain weight of wheat are often decreased by water-limitation in the north-eastern cropping belt of Australia. Based on knowledge that CIMMYT lines are well-adapted in this region, a recombinant inbred line (RIL) population between two elite CIMMYT bread wheats (Seri M82 and Babax) was evaluated under water-limited environments. Fourteen productivity traits were evaluated in 192 progeny in up to eight trials. For three aggregations of the environments (all, high yield or low yield), multiple quantitative trait loci (QTL) were detected, each explaining 3) from Seri (6D-b and UA-d) increased grain yield and co-located with a suggestive (2 4t ha(-1)) environments. A third increased grain yield QTL (7A-a) from Babax co-located with QTL for increased grain number. Six putative QTL increased grain weight and co-located with QTL for harvest index, grains per spike and spike number. Three putative QTL for increased grains per spike co-located with strong QTL for earlier flowering, increased grain weight and fewer spikes. A group of progeny that exceeded the mean grain yield and grain weight of commercial checks had an increased frequency of QTL for high WSC, large grain size, increased harvest index and greater height, but fewer stems, when compared to low yielding (20% less), low grain weight progeny. These findings were consistent with agronomic analyses of the germplasm and demonstrate that there should be opportunities to independently manipulate grain number and grain size which is typically difficult due to strong negative correlations.
Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-009-1173-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu144 citations 144 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-009-1173-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Springer Science and Business Media LLC McIntyre, C.Lynne; Mathews, Ky L.; Rattey, Allan; Chapman, Scott C.; Drenth, Janneke; Ghaderi, Mohammadghader; Reynolds, Matthew; Shorter, Ray;pmid: 19865806
Grain yield and grain weight of wheat are often decreased by water-limitation in the north-eastern cropping belt of Australia. Based on knowledge that CIMMYT lines are well-adapted in this region, a recombinant inbred line (RIL) population between two elite CIMMYT bread wheats (Seri M82 and Babax) was evaluated under water-limited environments. Fourteen productivity traits were evaluated in 192 progeny in up to eight trials. For three aggregations of the environments (all, high yield or low yield), multiple quantitative trait loci (QTL) were detected, each explaining 3) from Seri (6D-b and UA-d) increased grain yield and co-located with a suggestive (2 4t ha(-1)) environments. A third increased grain yield QTL (7A-a) from Babax co-located with QTL for increased grain number. Six putative QTL increased grain weight and co-located with QTL for harvest index, grains per spike and spike number. Three putative QTL for increased grains per spike co-located with strong QTL for earlier flowering, increased grain weight and fewer spikes. A group of progeny that exceeded the mean grain yield and grain weight of commercial checks had an increased frequency of QTL for high WSC, large grain size, increased harvest index and greater height, but fewer stems, when compared to low yielding (20% less), low grain weight progeny. These findings were consistent with agronomic analyses of the germplasm and demonstrate that there should be opportunities to independently manipulate grain number and grain size which is typically difficult due to strong negative correlations.
Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-009-1173-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu144 citations 144 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-009-1173-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Dandan Chen; Gang-Ping Xue; C. Lynne McIntyre; Shoucheng Chai;pmid: 29079898
TaRNAC1 is a constitutively and predominantly root-expressed NAC transcription factor. TaRNAC1 overexpression in wheat roots confers increased root length, biomass and drought tolerance and improved grain yield under water limitation. A large and deep root system is an important trait for yield sustainability of dryland cereal crops in drought-prone environments. This study investigated the role of a predominantly root-expressed NAC transcription factor from wheat (TaRNAC1) in the root growth. Expression analysis showed that TaRNAC1 was a constitutively expressed gene with high level expression in the roots and was not drought-upregulated. Overexpression of TaRNAC1 in wheat using a predominantly root-expressed promoter resulted in increased root length and biomass observed at the early growth stage and a marked increase in the maturity root biomass with dry root weight of > 70% higher than that of the wild type plants. Analysis of some root growth-related genes revealed that the expression level of GA3-ox2, which encodes GIBBERELLIN 3-OXIDASE catalysing the conversion of inactive gibberellin (GA) to active GA, was elevated in the roots of transgenic wheat. TaRNAC1 overexpressing transgenic wheat showed more dehydration tolerance under polyethylene glycol (PEG) treatment and produced more aboveground biomass and grain under water-limited conditions than the wild type plants. These data suggest that TaRNAC1 may play a role in root growth and be used as a molecular tool for potential enlargement of root system in wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00299-017-2224-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00299-017-2224-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Dandan Chen; Gang-Ping Xue; C. Lynne McIntyre; Shoucheng Chai;pmid: 29079898
TaRNAC1 is a constitutively and predominantly root-expressed NAC transcription factor. TaRNAC1 overexpression in wheat roots confers increased root length, biomass and drought tolerance and improved grain yield under water limitation. A large and deep root system is an important trait for yield sustainability of dryland cereal crops in drought-prone environments. This study investigated the role of a predominantly root-expressed NAC transcription factor from wheat (TaRNAC1) in the root growth. Expression analysis showed that TaRNAC1 was a constitutively expressed gene with high level expression in the roots and was not drought-upregulated. Overexpression of TaRNAC1 in wheat using a predominantly root-expressed promoter resulted in increased root length and biomass observed at the early growth stage and a marked increase in the maturity root biomass with dry root weight of > 70% higher than that of the wild type plants. Analysis of some root growth-related genes revealed that the expression level of GA3-ox2, which encodes GIBBERELLIN 3-OXIDASE catalysing the conversion of inactive gibberellin (GA) to active GA, was elevated in the roots of transgenic wheat. TaRNAC1 overexpressing transgenic wheat showed more dehydration tolerance under polyethylene glycol (PEG) treatment and produced more aboveground biomass and grain under water-limited conditions than the wild type plants. These data suggest that TaRNAC1 may play a role in root growth and be used as a molecular tool for potential enlargement of root system in wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00299-017-2224-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00299-017-2224-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Oxford University Press (OUP) Dandan Chen; Terese Richardson; Anne L. Rae; C. Lynne McIntyre; Shoucheng Chai; Gang-Ping Xue;doi: 10.1093/pcp/pcw126
pmid: 27440550
A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pcp/pcw126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pcp/pcw126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Oxford University Press (OUP) Dandan Chen; Terese Richardson; Anne L. Rae; C. Lynne McIntyre; Shoucheng Chai; Gang-Ping Xue;doi: 10.1093/pcp/pcw126
pmid: 27440550
A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pcp/pcw126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pcp/pcw126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2021 Germany, United Kingdom, Austria, Netherlands, France, France, Denmark, SwitzerlandPublisher:Elsevier BV Johan Rockström; Johan Rockström; Svend Christensen; Paul C. West; Brett A. Bryan; Alexander Mathys; Joost Vervoort; Pete Smith; Stephen A. Wood; Stephen A. Wood; Benjamin Leon Bodirsky; Cecile Godde; Mark T. van Wijk; Alejandro Parodi; Andy Jarvis; Ana Maria Loboguerrero; Bruce M. Campbell; Bruce M. Campbell; Sonja J. Vermeulen; Michael Clark; Philip K. Thornton; Rebecca Nelson; Jessica R. Bogard; Jessica Fanzo; Hugo Valin; Hannah H. E. van Zanten; Mario Herrero; Andy Hall; Rosamond L. Naylor; Katie D. Ricketts; Jeda Palmer; Alexander Popp; Prajal Pradhan; Ilje Pikaar; Christopher B. Barrett; Tim G. Benton; Graham D. Bonnett; Michael Obersteiner; Michael Obersteiner; C. Lynne McIntyre; Daniel Mason-D'Croz;doi: 10.1016/s2542-5196(20)30277-1 , 10.3929/ethz-b-000455479 , 10.60692/pepck-a0v37 , 10.60692/46p88-kff52
pmid: 33306994
handle: 10568/110853 , 2164/15923
doi: 10.1016/s2542-5196(20)30277-1 , 10.3929/ethz-b-000455479 , 10.60692/pepck-a0v37 , 10.60692/46p88-kff52
pmid: 33306994
handle: 10568/110853 , 2164/15923
Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level. The Lancet Planetary Health, 5 (1) ISSN:2542-5196
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/110853Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/15923Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30277-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 167 citations 167 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/110853Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/15923Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30277-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2021 Germany, United Kingdom, Austria, Netherlands, France, France, Denmark, SwitzerlandPublisher:Elsevier BV Johan Rockström; Johan Rockström; Svend Christensen; Paul C. West; Brett A. Bryan; Alexander Mathys; Joost Vervoort; Pete Smith; Stephen A. Wood; Stephen A. Wood; Benjamin Leon Bodirsky; Cecile Godde; Mark T. van Wijk; Alejandro Parodi; Andy Jarvis; Ana Maria Loboguerrero; Bruce M. Campbell; Bruce M. Campbell; Sonja J. Vermeulen; Michael Clark; Philip K. Thornton; Rebecca Nelson; Jessica R. Bogard; Jessica Fanzo; Hugo Valin; Hannah H. E. van Zanten; Mario Herrero; Andy Hall; Rosamond L. Naylor; Katie D. Ricketts; Jeda Palmer; Alexander Popp; Prajal Pradhan; Ilje Pikaar; Christopher B. Barrett; Tim G. Benton; Graham D. Bonnett; Michael Obersteiner; Michael Obersteiner; C. Lynne McIntyre; Daniel Mason-D'Croz;doi: 10.1016/s2542-5196(20)30277-1 , 10.3929/ethz-b-000455479 , 10.60692/pepck-a0v37 , 10.60692/46p88-kff52
pmid: 33306994
handle: 10568/110853 , 2164/15923
doi: 10.1016/s2542-5196(20)30277-1 , 10.3929/ethz-b-000455479 , 10.60692/pepck-a0v37 , 10.60692/46p88-kff52
pmid: 33306994
handle: 10568/110853 , 2164/15923
Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level. The Lancet Planetary Health, 5 (1) ISSN:2542-5196
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/110853Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/15923Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30277-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 167 citations 167 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/110853Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/15923Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30277-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Springer Science and Business Media LLC McIntyre, C.Lynne; Mathews, Ky L.; Rattey, Allan; Chapman, Scott C.; Drenth, Janneke; Ghaderi, Mohammadghader; Reynolds, Matthew; Shorter, Ray;pmid: 19865806
Grain yield and grain weight of wheat are often decreased by water-limitation in the north-eastern cropping belt of Australia. Based on knowledge that CIMMYT lines are well-adapted in this region, a recombinant inbred line (RIL) population between two elite CIMMYT bread wheats (Seri M82 and Babax) was evaluated under water-limited environments. Fourteen productivity traits were evaluated in 192 progeny in up to eight trials. For three aggregations of the environments (all, high yield or low yield), multiple quantitative trait loci (QTL) were detected, each explaining 3) from Seri (6D-b and UA-d) increased grain yield and co-located with a suggestive (2 4t ha(-1)) environments. A third increased grain yield QTL (7A-a) from Babax co-located with QTL for increased grain number. Six putative QTL increased grain weight and co-located with QTL for harvest index, grains per spike and spike number. Three putative QTL for increased grains per spike co-located with strong QTL for earlier flowering, increased grain weight and fewer spikes. A group of progeny that exceeded the mean grain yield and grain weight of commercial checks had an increased frequency of QTL for high WSC, large grain size, increased harvest index and greater height, but fewer stems, when compared to low yielding (20% less), low grain weight progeny. These findings were consistent with agronomic analyses of the germplasm and demonstrate that there should be opportunities to independently manipulate grain number and grain size which is typically difficult due to strong negative correlations.
Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-009-1173-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu144 citations 144 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-009-1173-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Springer Science and Business Media LLC McIntyre, C.Lynne; Mathews, Ky L.; Rattey, Allan; Chapman, Scott C.; Drenth, Janneke; Ghaderi, Mohammadghader; Reynolds, Matthew; Shorter, Ray;pmid: 19865806
Grain yield and grain weight of wheat are often decreased by water-limitation in the north-eastern cropping belt of Australia. Based on knowledge that CIMMYT lines are well-adapted in this region, a recombinant inbred line (RIL) population between two elite CIMMYT bread wheats (Seri M82 and Babax) was evaluated under water-limited environments. Fourteen productivity traits were evaluated in 192 progeny in up to eight trials. For three aggregations of the environments (all, high yield or low yield), multiple quantitative trait loci (QTL) were detected, each explaining 3) from Seri (6D-b and UA-d) increased grain yield and co-located with a suggestive (2 4t ha(-1)) environments. A third increased grain yield QTL (7A-a) from Babax co-located with QTL for increased grain number. Six putative QTL increased grain weight and co-located with QTL for harvest index, grains per spike and spike number. Three putative QTL for increased grains per spike co-located with strong QTL for earlier flowering, increased grain weight and fewer spikes. A group of progeny that exceeded the mean grain yield and grain weight of commercial checks had an increased frequency of QTL for high WSC, large grain size, increased harvest index and greater height, but fewer stems, when compared to low yielding (20% less), low grain weight progeny. These findings were consistent with agronomic analyses of the germplasm and demonstrate that there should be opportunities to independently manipulate grain number and grain size which is typically difficult due to strong negative correlations.
Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-009-1173-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu144 citations 144 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-009-1173-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu