- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 01 Jan 2021 France, United Kingdom, SwitzerlandPublisher:Wiley Funded by:EC | MANTEL, NSF | LTREB: Response of a Rese..., NSF | LTREB: Response of a Rese... +4 projectsEC| MANTEL ,NSF| LTREB: Response of a Reservoir Ecosystem to Declining Subsidies of Nutrients and Detritus ,NSF| LTREB: Response of a Reservoir Ecosystem to Declining Subsidies of Nutrients and Detritus ,NSF| Interhabitat Transport of Nutrients by Detritivorous Fish: Impacts on Phytoplankton Communities ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,NSF| LTREB Renewal: Response of a reservoir ecosystem to declining subsidies of nutrients and detritus ,NSF| Collaborative Research: Impacts of a Strong Interactor Along a Productivity Gradient: Linking Watersheds with Reservoir Food WebsBenjamin M. Kraemer; Heidrun Feuchtmayr; Karan Kakouei; Scott N. Higgins; Francesco Pomati; Jason D. Stockwell; Jennifer L. Graham; Orlane Anneville; Stephen J. Thackeray; Lars G. Rudstam; Laurence Carvalho; Michael J. Vanni; Rita Adrian; Rita Adrian;pmid: 34465002
AbstractLand use and climate change are anticipated to affect phytoplankton of lakes worldwide. The effects will depend on the magnitude of projected land use and climate changes and lake sensitivity to these factors. We used random forests fit with long‐term (1971–2016) phytoplankton and cyanobacteria abundance time series, climate observations (1971–2016), and upstream catchment land use (global Clumondo models for the year 2000) data from 14 European and 15 North American lakes basins. We projected future phytoplankton and cyanobacteria abundance in the 29 focal lake basins and 1567 lakes across focal regions based on three land use (sustainability, middle of the road, and regional rivalry) and two climate (RCP 2.6 and 8.5) scenarios to mid‐21st century. On average, lakes are expected to have higher phytoplankton and cyanobacteria due to increases in both urban land use and temperature, and decreases in forest habitat. However, the relative importance of land use and climate effects varied substantially among regions and lakes. Accounting for land use and climate changes in a combined way based on extensive data allowed us to identify urbanization as the major driver of phytoplankton development in lakes located in urban areas, and climate as major driver in lakes located in remote areas where past and future land use changes were minimal. For approximately one‐third of the studied lakes, both drivers were relatively important. The results of this large scale study suggest the best approaches for mitigating the effects of human activity on lake phytoplankton and cyanobacteria will depend strongly on lake sensitivity to long‐term change and the magnitude of projected land use and climate changes at a given location. Our quantitative analyses suggest local management measures should focus on retaining nutrients in urban landscapes to prevent nutrient pollution from exacerbating ongoing changes to lake ecosystems from climate change.
NERC Open Research A... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03519592Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03519592Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:Wiley Brian Moss; Heidrun Feuchtmayr; Heidrun Feuchtmayr; Rebecca Moran; David Atkinson; David Atkinson; Keith Hatton; Ian F. Harvey; Tom Heyes;Summary1. Shallow lakes and their ectothermic inhabitants are particularly vulnerable to the effects of climatic warming. These impacts are likely to depend on nutrient loading, especially if the combination of warming and eutrophication leads to severe hypoxia.2. To investigate effects of realistic warming and nutrient loading on a fish species with high tolerance of warming and hypoxia, we observed population changes and timing of reproduction of three‐spined sticklebacks in 24 outdoor shallow freshwater ecosystems with combinations of temperature (ambient and ambient +4 °C) and three nutrient treatments over 16 months.3. Warming reduced stickleback population biomass by 60% (population size by 76%) and nutrient‐addition reduced biomass by about 80% (population size 95%). Nutrients and warming together resulted in extinction of the stickleback populations. These losses were mainly attributed to the increased likelihood of severe hypoxia in heated and nutrient‐addition mesocosms.4. Warming of nutrient‐rich waters can thus have dire consequences for freshwater ectotherm populations. The loss even of a hardy fish suggests a precarious future for many less tolerant species in such eutrophic systems under current climate change predictions.
Freshwater Biology arrow_drop_down Freshwater BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2427.2009.02276.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Freshwater Biology arrow_drop_down Freshwater BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2427.2009.02276.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1, EC | MARSFCT| LA 1 ,EC| MARSAuthors: Pottinger, Tom G.; Feuchtmayr, Heidrun;Fish in northern European lakes must cope with climate change, including frequent extreme weather events, and eutrophication. In terrestrial vertebrates the disruption of local environmental stability can evoke a stress response, with potentially adverse outcomes for growth, reproduction and survival, but the effect of extreme weather events on aquatic vertebrates is not understood. As part of a mesocosm scale multiple-stressor study we investigated (i) whether three-spined sticklebacks (Gasterosteus aculeatus L.) exhibited an acute stress response (by measuring the steroid hormone cortisol) to simulated rainfall events, and (ii) whether any such response was modified by elevated temperature and nutrient concentrations. On two occasions, sticklebacks were sampled 1 h and 24 h following the simulated rainfall event. Cortisol levels were elevated within 1 h of the rainfall event in November in fish from heated tanks (with and without nutrient augmentation). In May, cortisol increased within 1 h of the rainfall event but only in fish from nutrient-enriched mesocosms (heated and unheated). Cortisol had declined to control levels within 24 h on both occasions. This outcome suggests that the acute effect on fish of transient stressors, such as extreme rainfall events, may be modified by other environmental factors, but that interactions between these variables may be difficult to predict.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-020-04393-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-020-04393-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Wiley Thackeray, Stephen J.; Henrys, Peter A.; Feuchtmayr, Heidrun; Jones, Ian D.; Maberly, Stephen C.; Winfield, Ian J.;doi: 10.1111/gcb.12326
pmid: 23868351
AbstractPhenological changes have been observed globally for marine, freshwater and terrestrial species, and are an important element of the global biological ‘fingerprint’ of climate change. Differences in rates of change could desynchronize seasonal species interactions within a food web, threatening ecosystem functioning. Quantification of this risk is hampered by the rarity of long‐term data for multiple interacting species from the same ecosystem and by the diversity of possible phenological metrics, which vary in their ecological relevance to food web interactions. We compare phenological change for phytoplankton (chlorophyll a), zooplankton (Daphnia) and fish (perch, Perca fluviatilis) in two basins of Windermere over 40 years and determine whether change has differed among trophic levels, while explicitly accounting for among‐metric differences in rates of change. Though rates of change differed markedly among the nine metrics used, seasonal events shifted earlier for all metrics and trophic levels: zooplankton advanced most, and fish least, rapidly. Evidence of altered synchrony was found in both lake basins, when combining information from all phenological metrics. However, comparisons based on single metrics did not consistently detect this signal. A multimetric approach showed that across trophic levels, earlier phenological events have been associated with increasing water temperature. However, for phytoplankton and zooplankton, phenological change was also associated with changes in resource availability. Lower silicate, and higher phosphorus, concentrations were associated with earlier phytoplankton growth, and earlier phytoplankton growth was associated with earlier zooplankton growth. The developing trophic mismatch detected between the dominant fish species in Windermere and important zooplankton food resources may ultimately affect fish survival and portend significant impacts upon ecosystem functioning. We advocate that future studies on phenological synchrony combine data from multiple phenological metrics, to increase confidence in assessments of change and likely ecological consequences.
NERC Open Research A... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Data Paper 2021Embargo end date: 01 Jan 2021 Italy, Switzerland, Sweden, Canada, Belgium, Australia, Finland, Finland, Italy, France, Belarus, Canada, Norway, Australia, United States, Belarus, Italy, Italy, Italy, France, Italy, United Kingdom, Italy, Germany, Canada, CanadaPublisher:Springer Science and Business Media LLC Funded by:NSF | LTER: Comparative Study o..., NSF | LTREB: Response of a Rese..., NSF | Collaborative LTREB Propo... +9 projectsNSF| LTER: Comparative Study of a Suite of Lakes in Wisconsin ,NSF| LTREB: Response of a Reservoir Ecosystem to Declining Subsidies of Nutrients and Detritus ,NSF| Collaborative LTREB Proposal: Will increases in dissolved organic matter accelerate a shift in trophic status through anoxia-driven positive feedbacks in an oligotrophic lake? ,NSF| OPUS: CRS Synthesis to add dissolved organic matter to the trophic paradigm: the importance of water transparency in structuring pelagic ecosystems ,NSF| LTREB: Response of a Reservoir Ecosystem to Declining Subsidies of Nutrients and Detritus ,NSF| Interhabitat Transport of Nutrients by Detritivorous Fish: Impacts on Phytoplankton Communities ,NSF| Next-generation instrumented buoys for the University of Wisconsin Trout Lake Station ,NSF| LTREB Renewal - Collaborative Research: Responses of high elevation, aquatic ecosystems to interannual climate variability and trends in atmospheric inputs ,RSF| Biological Effects of global warming on cold-adapted endemic amphipods of Lake Baikal ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,NSF| LTREB Renewal: Response of a reservoir ecosystem to declining subsidies of nutrients and detritus ,NSF| Collaborative Research: Impacts of a Strong Interactor Along a Productivity Gradient: Linking Watersheds with Reservoir Food WebsSvetlana V. Shimaraeva; Fabio Lepori; Jasmine E. Saros; Jen Klug; Pierre Denis Plisnier; Helen V. Pislegina; Steve Sadro; Oliver Köster; Evelyn E. Gaiser; Stephanie J. Melles; Wendel Keller; David P. Hamilton; Sudeep Chandra; Donald C. Pierson; Benjamin M. Kraemer; Karl E. Havens; Dörthe C. Müller-Navarra; Johanna Korhonen; Alexander P. Tolomeev; Peter R. Leavitt; T. V. Zhukova; Klaus Joehnk; Syuhei Ban; Jouko Sarvala; Hilary M. Swain; Andrew M. Paterson; Daniel E. Schindler; Lewis Sitoki; Piet Verburg; Kathleen C. Weathers; Elizabeth M. Mette; Chris G. McBride; Martin T. Dokulil; Timo Huttula; Sally Macintyre; Gesa A. Weyhenmeyer; Esteban Balseiro; Margaret Dix; Martin S. Luger; Jason Tallant; Craig E. Williamson; Peter D. F. Isles; Laura Pacholski; B. V. Adamovich; Ekaterina V. Lepskaya; Koji Tominaga; Scott N. Higgins; Rachel M. Pilla; Lesley B. Knoll; Eugene A. Silow; Michela Rogora; Olga O. Rusanovskaya; Alon Rimmer; Émilie Saulnier-Talbot; Dietmar Straile; Beatriz Modenutti; Nikolai M. Korovchinsky; Stephen C. Maberly; Dag O. Hessen; Hannu Huuskonen; Josef Wanzenböck; Harald Hetzenauer; Rolf D. Vinebrooke; Maxim A. Timofeyev; María J. González; Noah R. Lottig; Heidrun Feuchtmayr; Barbara Leoni; David C. Richardson; Egor S. Zadereev; William Colom-Montero; Peter B. McIntyre; Natalie A. Feldsine; James A. Rusak; K. David Hambright; Denis Y. Rogozin; Shawn P. Devlin; Orlane Anneville; Scott F. Girdner; Ruben Sommaruga; Michael J. Vanni; Natalie K. Fogarty; Wim Thiery; Wim Thiery; Kristin E. Strock; Nico Salmaso; Rita Adrian;pmid: 34349102
pmc: PMC8339007
AbstractClimate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.
Scientific Data arrow_drop_down Belarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288365Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/406830Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: https://hdl.handle.net/10449/77135Data sources: Bielefeld Academic Search Engine (BASE)oURspace - The University of Regina's Institutional RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10294/15880Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/5p12z01cData sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/93088Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2021License: CC BYFull-Text: http://dx.doi.org/10.1038/s41597-021-00983-yData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021Data sources: HELDA - Digital Repository of the University of HelsinkiVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortaleScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Florida International University: Digital Commons@FIUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00983-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Data arrow_drop_down Belarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288365Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/406830Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: https://hdl.handle.net/10449/77135Data sources: Bielefeld Academic Search Engine (BASE)oURspace - The University of Regina's Institutional RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10294/15880Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/5p12z01cData sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/93088Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2021License: CC BYFull-Text: http://dx.doi.org/10.1038/s41597-021-00983-yData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021Data sources: HELDA - Digital Repository of the University of HelsinkiVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortaleScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Florida International University: Digital Commons@FIUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00983-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, United KingdomPublisher:The Royal Society Funded by:FCT | LA 1FCT| LA 1Wang, Ying-Jie; Tüzün, Nedim; de Meester, Luc; Feuchtmayr, Heidrun; Sentis, Arnaud; Stoks, Robby;Species may cope with warming through both rapid evolutionary and plastic responses. While thermal performance curves (TPCs), reflecting thermal plasticity, are considered powerful tools to understand the impact of warming on ectotherms, their rapid evolution has been rarely studied for multiple traits. We capitalized on a 2-year experimental evolution trial in outdoor mesocosms that were kept at ambient temperatures or heated 4°C above ambient, by testing in a follow-up common-garden experiment, for rapid evolution of the TPCs for multiple key traits of the water fleaDaphnia magna. The heat-selectedDaphniashowed evolutionary shifts of the unimodal TPCs for survival, fecundity at first clutch and intrinsic population growth rate toward higher optimum temperatures, and a less pronounced downward curvature indicating a better ability to keep fitness high across a range of high temperatures. We detected no evolution of the linear TPCs for somatic growth, mass and development rate, and for the traits related to energy gain (ingestion rate) and costs (metabolic rate). As a result, also the relative thermal slope of energy gain versus energy costs did not vary. These results suggest the overall (rather thanper capita) top-down impact ofD. magnamay increase under rapid thermal evolution.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2023 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2023Data sources: Europe PubMed CentralInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2022.2289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2023 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2023Data sources: Europe PubMed CentralInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2022.2289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Canada, United KingdomPublisher:Elsevier BV Funded by:FCT | LA 1FCT| LA 1Feuchtmayr, Heidrun; Pottinger, Thomas G.; Moore, Alanna; De Ville, Mitzi M.; Caillouet, Laurie; Carter, Heather T.; Pereira, M. Gloria; Maberly, Stephen C.;pmid: 31075590
An increase of dissolved organic carbon (DOC) in inland waters has been reported across the northern temperate region but the effects of this on whole lake ecosystems, often combined with other anthropogenic stressors like nutrient inputs and warming, are poorly known. The effects of these changes on different component of the ecosystem were assessed in an experiment using twenty-four large (3000L) outdoor mesocosms simulating shallow lakes. Two different temperature regimes (ambient and ambient +4 °C) combined with three levels of organic matter (OM, added as filtered peaty water), simulating the DOC increase that is predicted to take place over the next 4 to 21 years were used. Neither temperature nor OM had significant effects on net ecosystem production, respiration or gross primary production. Phytoplankton chlorophyll a concentration was not significantly affected by warming, however in summer, autumn and winter it was significantly higher in mesocosms receiving intermediate OM levels (July-Feb DOC concentrations 2-6 mg L-1). Summer cyanobacterial blooms were highest in intermediate, and lowest in the highest OM treatments. OM concentration also influenced total macroinvertebrate abundance which was greater in spring and summer in mesocosms with intermediate and high OM. Fish abundance was not significantly affected by OM concentration, but abundance was greater in ambient (55 fish subsample-1) compared to heated mesocosms (17 fish subsample-1) and maximum abundance occurred two weeks later compared to heated mesocosms. The results suggest that changes in OM may have a greater effect on shallow lakes than temperature and that phytoplankton, especially cyanobacteria, benefit from intermediate OM concentrations, therefore, nuisance algal blooms might increase in relatively clear shallow eutrophic lakes where DOC concentrations increase.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.04.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.04.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 25 Apr 2022 Estonia, Germany, United Kingdom, Italy, Italy, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | TREICLAKE, UKRI | Marine LTSS: Climate Link..., FCT | LA 1 +1 projectsEC| TREICLAKE ,UKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,FCT| LA 1 ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Chun-Wei Chang; Takeshi Miki; Hao Ye; Sami Souissi; Rita Adrian; Orlane Anneville; Helen Agasild; Syuhei Ban; Yaron Be’eri-Shlevin; Yin-Ru Chiang; Heidrun Feuchtmayr; Gideon Gal; Satoshi Ichise; Maiko Kagami; Michio Kumagai; Xin Liu; Shin-Ichiro S. Matsuzaki; Marina M. Manca; Peeter Nõges; Roberta Piscia; Michela Rogora; Fuh-Kwo Shiah; Stephen J. Thackeray; Claire E. Widdicombe; Jiunn-Tzong Wu; Tamar Zohary; Chih-hao Hsieh;AbstractUntangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass). Consequently, studies that only consider separable, unidirectional effects can produce divergent conclusions and equivocal ecological implications. To address this complexity, we use empirical dynamic modeling to assemble causal networks for 19 natural aquatic ecosystems (N24◦~N58◦) and quantified strengths of feedbacks among phytoplankton diversity, phytoplankton biomass, and environmental factors. Through a cross-system comparison, we identify macroecological patterns; in more diverse, oligotrophic ecosystems, biodiversity effects are more important than environmental effects (nutrients and temperature) as drivers of biomass. Furthermore, feedback strengths vary with productivity. In warm, productive systems, strong nitrate-mediated feedbacks usually prevail, whereas there are strong, phosphate-mediated feedbacks in cold, less productive systems. Our findings, based on recovered feedbacks, highlight the importance of a network view in future ecosystem management.
IRIS Cnr arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03664870Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10492/7311Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Refubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-28761-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03664870Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10492/7311Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Refubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-28761-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Frank Sommer; Heidrun Feuchtmayr; Ulrich Sommer; Thomas Hansen;pmid: 15552056
We used marine phytoplankton from mesocosms seeded with different zooplankton densities to study the impact of mesozooplankton on phytoplankton nutrient limitation. After 7 d of grazing (copepod mesocosms) or 9 d (appendicularian mesocosms) phytoplankton nutrient limitation was studied by enrichment bioassays. After removal of mesozooplankton, bioassay bottles received either no nutrients, phosphorus or nitrogen alone, or a combination of nitrogen and phosphorus and were incubated for 2 d. Phytoplankton reproductive rates in the bottles without nutrient addition were calculated after correction for grazing by ciliates and indicated increasing nitrogen limitation with increasing copepod abundance. No nutrient limitation was found in the appendicularian mesocosms. The increase of nutrient limitation with increasing copepod density seems to be mainly the result of a trophic cascade effect: Copepods released nanoplankton from ciliate grazing pressure, and thereby enhanced nitrogen exhaustion by nanophytoplankton and reduced nitrogen excretion by ciliates. Nitrogen sequestration in copepod biomass, the mechanism predicted by the ecological stoichiometry theory, seems to have been a weaker effect because there was only little copepod growth during the experiment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1078/1434461041844268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1078/1434461041844268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Sweden, France, Italy, Netherlands, France, Italy, Spain, Netherlands, Italy, Norway, United Kingdom, Italy, Netherlands, United Kingdom, Denmark, Belgium, Portugal, Finland, SwedenPublisher:Springer Science and Business Media LLC Funded by:EC | eLTER PLUS, UKRI | UK Status, Change and Pro..., FCT | Centre for Functional Eco...EC| eLTER PLUS ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,FCT| Centre for Functional EcologyD. A. Beaumont; Don Monteith; Herman Hummel; Henning Meesenburg; Audrey Alignier; Filipe Martinho; D. Pallett; Vesela Evtimova; Liat Hadar; Renate Alber; Patricia Cardoso; Francesca Pilotto; Francesca Pilotto; Bogdan Jaroszewicz; Ricardo García-González; Susanne C. Schneider; Radoslav Stanchev; Dāvis Ozoliņš; Luc Barbaro; Daniel Gómez García; Anne Thimonier; Sue Benham; Marcus Schaub; Tanja Pipan; Bachisio Mario Padedda; Karline Soetaert; Juha Pöyry; Daniel Oro; Reima Leinonen; Lisa Sundqvist; Lubos Halada; Gunther Van Ryckegem; Ingrid Kröncke; Agnija Skuja; Elisa Camatti; Gert Van Hoey; Gert Everaert; Christopher Andrews; Vincent Bretagnolle; Miguel Ângelo Pardal; Marco Pansera; Henrik Kalivoda; Ingolf Kühn; Ingolf Kühn; Natalie Beenaerts; Stefan Stoll; Stefan Stoll; Rita Adrian; Thomas C. Jensen; Boris P. Nikolov; Kaisa-Leena Huttunen; David S. Boukal; David S. Boukal; Bruno J. Ens; Roberto Canullo; Stefano Minerbi; Ulf Grandin; Gunta Spriņģe; Julia S. Meyer; Heidrun Feuchtmayr; Samuel Vorhauser; Melinda Halassy; Bruno Petriccione; Jerzy M. Gutowski; Jenni A. Stockan; S. Schafer; Peter Haase; Peter Haase; Jaana Bäck; Inger Kappel Schmidt; Marcel E. Visser;pmid: 32661354
pmc: PMC7359034
AbstractLocal biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17171-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 374 citations 374 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 45visibility views 45 download downloads 72 Powered bymore_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17171-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 01 Jan 2021 France, United Kingdom, SwitzerlandPublisher:Wiley Funded by:EC | MANTEL, NSF | LTREB: Response of a Rese..., NSF | LTREB: Response of a Rese... +4 projectsEC| MANTEL ,NSF| LTREB: Response of a Reservoir Ecosystem to Declining Subsidies of Nutrients and Detritus ,NSF| LTREB: Response of a Reservoir Ecosystem to Declining Subsidies of Nutrients and Detritus ,NSF| Interhabitat Transport of Nutrients by Detritivorous Fish: Impacts on Phytoplankton Communities ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,NSF| LTREB Renewal: Response of a reservoir ecosystem to declining subsidies of nutrients and detritus ,NSF| Collaborative Research: Impacts of a Strong Interactor Along a Productivity Gradient: Linking Watersheds with Reservoir Food WebsBenjamin M. Kraemer; Heidrun Feuchtmayr; Karan Kakouei; Scott N. Higgins; Francesco Pomati; Jason D. Stockwell; Jennifer L. Graham; Orlane Anneville; Stephen J. Thackeray; Lars G. Rudstam; Laurence Carvalho; Michael J. Vanni; Rita Adrian; Rita Adrian;pmid: 34465002
AbstractLand use and climate change are anticipated to affect phytoplankton of lakes worldwide. The effects will depend on the magnitude of projected land use and climate changes and lake sensitivity to these factors. We used random forests fit with long‐term (1971–2016) phytoplankton and cyanobacteria abundance time series, climate observations (1971–2016), and upstream catchment land use (global Clumondo models for the year 2000) data from 14 European and 15 North American lakes basins. We projected future phytoplankton and cyanobacteria abundance in the 29 focal lake basins and 1567 lakes across focal regions based on three land use (sustainability, middle of the road, and regional rivalry) and two climate (RCP 2.6 and 8.5) scenarios to mid‐21st century. On average, lakes are expected to have higher phytoplankton and cyanobacteria due to increases in both urban land use and temperature, and decreases in forest habitat. However, the relative importance of land use and climate effects varied substantially among regions and lakes. Accounting for land use and climate changes in a combined way based on extensive data allowed us to identify urbanization as the major driver of phytoplankton development in lakes located in urban areas, and climate as major driver in lakes located in remote areas where past and future land use changes were minimal. For approximately one‐third of the studied lakes, both drivers were relatively important. The results of this large scale study suggest the best approaches for mitigating the effects of human activity on lake phytoplankton and cyanobacteria will depend strongly on lake sensitivity to long‐term change and the magnitude of projected land use and climate changes at a given location. Our quantitative analyses suggest local management measures should focus on retaining nutrients in urban landscapes to prevent nutrient pollution from exacerbating ongoing changes to lake ecosystems from climate change.
NERC Open Research A... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03519592Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03519592Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:Wiley Brian Moss; Heidrun Feuchtmayr; Heidrun Feuchtmayr; Rebecca Moran; David Atkinson; David Atkinson; Keith Hatton; Ian F. Harvey; Tom Heyes;Summary1. Shallow lakes and their ectothermic inhabitants are particularly vulnerable to the effects of climatic warming. These impacts are likely to depend on nutrient loading, especially if the combination of warming and eutrophication leads to severe hypoxia.2. To investigate effects of realistic warming and nutrient loading on a fish species with high tolerance of warming and hypoxia, we observed population changes and timing of reproduction of three‐spined sticklebacks in 24 outdoor shallow freshwater ecosystems with combinations of temperature (ambient and ambient +4 °C) and three nutrient treatments over 16 months.3. Warming reduced stickleback population biomass by 60% (population size by 76%) and nutrient‐addition reduced biomass by about 80% (population size 95%). Nutrients and warming together resulted in extinction of the stickleback populations. These losses were mainly attributed to the increased likelihood of severe hypoxia in heated and nutrient‐addition mesocosms.4. Warming of nutrient‐rich waters can thus have dire consequences for freshwater ectotherm populations. The loss even of a hardy fish suggests a precarious future for many less tolerant species in such eutrophic systems under current climate change predictions.
Freshwater Biology arrow_drop_down Freshwater BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2427.2009.02276.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Freshwater Biology arrow_drop_down Freshwater BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2427.2009.02276.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1, EC | MARSFCT| LA 1 ,EC| MARSAuthors: Pottinger, Tom G.; Feuchtmayr, Heidrun;Fish in northern European lakes must cope with climate change, including frequent extreme weather events, and eutrophication. In terrestrial vertebrates the disruption of local environmental stability can evoke a stress response, with potentially adverse outcomes for growth, reproduction and survival, but the effect of extreme weather events on aquatic vertebrates is not understood. As part of a mesocosm scale multiple-stressor study we investigated (i) whether three-spined sticklebacks (Gasterosteus aculeatus L.) exhibited an acute stress response (by measuring the steroid hormone cortisol) to simulated rainfall events, and (ii) whether any such response was modified by elevated temperature and nutrient concentrations. On two occasions, sticklebacks were sampled 1 h and 24 h following the simulated rainfall event. Cortisol levels were elevated within 1 h of the rainfall event in November in fish from heated tanks (with and without nutrient augmentation). In May, cortisol increased within 1 h of the rainfall event but only in fish from nutrient-enriched mesocosms (heated and unheated). Cortisol had declined to control levels within 24 h on both occasions. This outcome suggests that the acute effect on fish of transient stressors, such as extreme rainfall events, may be modified by other environmental factors, but that interactions between these variables may be difficult to predict.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-020-04393-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-020-04393-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Wiley Thackeray, Stephen J.; Henrys, Peter A.; Feuchtmayr, Heidrun; Jones, Ian D.; Maberly, Stephen C.; Winfield, Ian J.;doi: 10.1111/gcb.12326
pmid: 23868351
AbstractPhenological changes have been observed globally for marine, freshwater and terrestrial species, and are an important element of the global biological ‘fingerprint’ of climate change. Differences in rates of change could desynchronize seasonal species interactions within a food web, threatening ecosystem functioning. Quantification of this risk is hampered by the rarity of long‐term data for multiple interacting species from the same ecosystem and by the diversity of possible phenological metrics, which vary in their ecological relevance to food web interactions. We compare phenological change for phytoplankton (chlorophyll a), zooplankton (Daphnia) and fish (perch, Perca fluviatilis) in two basins of Windermere over 40 years and determine whether change has differed among trophic levels, while explicitly accounting for among‐metric differences in rates of change. Though rates of change differed markedly among the nine metrics used, seasonal events shifted earlier for all metrics and trophic levels: zooplankton advanced most, and fish least, rapidly. Evidence of altered synchrony was found in both lake basins, when combining information from all phenological metrics. However, comparisons based on single metrics did not consistently detect this signal. A multimetric approach showed that across trophic levels, earlier phenological events have been associated with increasing water temperature. However, for phytoplankton and zooplankton, phenological change was also associated with changes in resource availability. Lower silicate, and higher phosphorus, concentrations were associated with earlier phytoplankton growth, and earlier phytoplankton growth was associated with earlier zooplankton growth. The developing trophic mismatch detected between the dominant fish species in Windermere and important zooplankton food resources may ultimately affect fish survival and portend significant impacts upon ecosystem functioning. We advocate that future studies on phenological synchrony combine data from multiple phenological metrics, to increase confidence in assessments of change and likely ecological consequences.
NERC Open Research A... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12326&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Data Paper 2021Embargo end date: 01 Jan 2021 Italy, Switzerland, Sweden, Canada, Belgium, Australia, Finland, Finland, Italy, France, Belarus, Canada, Norway, Australia, United States, Belarus, Italy, Italy, Italy, France, Italy, United Kingdom, Italy, Germany, Canada, CanadaPublisher:Springer Science and Business Media LLC Funded by:NSF | LTER: Comparative Study o..., NSF | LTREB: Response of a Rese..., NSF | Collaborative LTREB Propo... +9 projectsNSF| LTER: Comparative Study of a Suite of Lakes in Wisconsin ,NSF| LTREB: Response of a Reservoir Ecosystem to Declining Subsidies of Nutrients and Detritus ,NSF| Collaborative LTREB Proposal: Will increases in dissolved organic matter accelerate a shift in trophic status through anoxia-driven positive feedbacks in an oligotrophic lake? ,NSF| OPUS: CRS Synthesis to add dissolved organic matter to the trophic paradigm: the importance of water transparency in structuring pelagic ecosystems ,NSF| LTREB: Response of a Reservoir Ecosystem to Declining Subsidies of Nutrients and Detritus ,NSF| Interhabitat Transport of Nutrients by Detritivorous Fish: Impacts on Phytoplankton Communities ,NSF| Next-generation instrumented buoys for the University of Wisconsin Trout Lake Station ,NSF| LTREB Renewal - Collaborative Research: Responses of high elevation, aquatic ecosystems to interannual climate variability and trends in atmospheric inputs ,RSF| Biological Effects of global warming on cold-adapted endemic amphipods of Lake Baikal ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,NSF| LTREB Renewal: Response of a reservoir ecosystem to declining subsidies of nutrients and detritus ,NSF| Collaborative Research: Impacts of a Strong Interactor Along a Productivity Gradient: Linking Watersheds with Reservoir Food WebsSvetlana V. Shimaraeva; Fabio Lepori; Jasmine E. Saros; Jen Klug; Pierre Denis Plisnier; Helen V. Pislegina; Steve Sadro; Oliver Köster; Evelyn E. Gaiser; Stephanie J. Melles; Wendel Keller; David P. Hamilton; Sudeep Chandra; Donald C. Pierson; Benjamin M. Kraemer; Karl E. Havens; Dörthe C. Müller-Navarra; Johanna Korhonen; Alexander P. Tolomeev; Peter R. Leavitt; T. V. Zhukova; Klaus Joehnk; Syuhei Ban; Jouko Sarvala; Hilary M. Swain; Andrew M. Paterson; Daniel E. Schindler; Lewis Sitoki; Piet Verburg; Kathleen C. Weathers; Elizabeth M. Mette; Chris G. McBride; Martin T. Dokulil; Timo Huttula; Sally Macintyre; Gesa A. Weyhenmeyer; Esteban Balseiro; Margaret Dix; Martin S. Luger; Jason Tallant; Craig E. Williamson; Peter D. F. Isles; Laura Pacholski; B. V. Adamovich; Ekaterina V. Lepskaya; Koji Tominaga; Scott N. Higgins; Rachel M. Pilla; Lesley B. Knoll; Eugene A. Silow; Michela Rogora; Olga O. Rusanovskaya; Alon Rimmer; Émilie Saulnier-Talbot; Dietmar Straile; Beatriz Modenutti; Nikolai M. Korovchinsky; Stephen C. Maberly; Dag O. Hessen; Hannu Huuskonen; Josef Wanzenböck; Harald Hetzenauer; Rolf D. Vinebrooke; Maxim A. Timofeyev; María J. González; Noah R. Lottig; Heidrun Feuchtmayr; Barbara Leoni; David C. Richardson; Egor S. Zadereev; William Colom-Montero; Peter B. McIntyre; Natalie A. Feldsine; James A. Rusak; K. David Hambright; Denis Y. Rogozin; Shawn P. Devlin; Orlane Anneville; Scott F. Girdner; Ruben Sommaruga; Michael J. Vanni; Natalie K. Fogarty; Wim Thiery; Wim Thiery; Kristin E. Strock; Nico Salmaso; Rita Adrian;pmid: 34349102
pmc: PMC8339007
AbstractClimate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.
Scientific Data arrow_drop_down Belarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288365Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/406830Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: https://hdl.handle.net/10449/77135Data sources: Bielefeld Academic Search Engine (BASE)oURspace - The University of Regina's Institutional RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10294/15880Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/5p12z01cData sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/93088Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2021License: CC BYFull-Text: http://dx.doi.org/10.1038/s41597-021-00983-yData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021Data sources: HELDA - Digital Repository of the University of HelsinkiVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortaleScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Florida International University: Digital Commons@FIUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00983-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Data arrow_drop_down Belarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288365Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/406830Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: https://hdl.handle.net/10449/77135Data sources: Bielefeld Academic Search Engine (BASE)oURspace - The University of Regina's Institutional RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10294/15880Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/5p12z01cData sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/93088Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2021License: CC BYFull-Text: http://dx.doi.org/10.1038/s41597-021-00983-yData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2021Data sources: HELDA - Digital Repository of the University of HelsinkiVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortaleScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Florida International University: Digital Commons@FIUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-021-00983-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, United KingdomPublisher:The Royal Society Funded by:FCT | LA 1FCT| LA 1Wang, Ying-Jie; Tüzün, Nedim; de Meester, Luc; Feuchtmayr, Heidrun; Sentis, Arnaud; Stoks, Robby;Species may cope with warming through both rapid evolutionary and plastic responses. While thermal performance curves (TPCs), reflecting thermal plasticity, are considered powerful tools to understand the impact of warming on ectotherms, their rapid evolution has been rarely studied for multiple traits. We capitalized on a 2-year experimental evolution trial in outdoor mesocosms that were kept at ambient temperatures or heated 4°C above ambient, by testing in a follow-up common-garden experiment, for rapid evolution of the TPCs for multiple key traits of the water fleaDaphnia magna. The heat-selectedDaphniashowed evolutionary shifts of the unimodal TPCs for survival, fecundity at first clutch and intrinsic population growth rate toward higher optimum temperatures, and a less pronounced downward curvature indicating a better ability to keep fitness high across a range of high temperatures. We detected no evolution of the linear TPCs for somatic growth, mass and development rate, and for the traits related to energy gain (ingestion rate) and costs (metabolic rate). As a result, also the relative thermal slope of energy gain versus energy costs did not vary. These results suggest the overall (rather thanper capita) top-down impact ofD. magnamay increase under rapid thermal evolution.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2023 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2023Data sources: Europe PubMed CentralInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2022.2289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2023 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2023Data sources: Europe PubMed CentralInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2022.2289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Canada, United KingdomPublisher:Elsevier BV Funded by:FCT | LA 1FCT| LA 1Feuchtmayr, Heidrun; Pottinger, Thomas G.; Moore, Alanna; De Ville, Mitzi M.; Caillouet, Laurie; Carter, Heather T.; Pereira, M. Gloria; Maberly, Stephen C.;pmid: 31075590
An increase of dissolved organic carbon (DOC) in inland waters has been reported across the northern temperate region but the effects of this on whole lake ecosystems, often combined with other anthropogenic stressors like nutrient inputs and warming, are poorly known. The effects of these changes on different component of the ecosystem were assessed in an experiment using twenty-four large (3000L) outdoor mesocosms simulating shallow lakes. Two different temperature regimes (ambient and ambient +4 °C) combined with three levels of organic matter (OM, added as filtered peaty water), simulating the DOC increase that is predicted to take place over the next 4 to 21 years were used. Neither temperature nor OM had significant effects on net ecosystem production, respiration or gross primary production. Phytoplankton chlorophyll a concentration was not significantly affected by warming, however in summer, autumn and winter it was significantly higher in mesocosms receiving intermediate OM levels (July-Feb DOC concentrations 2-6 mg L-1). Summer cyanobacterial blooms were highest in intermediate, and lowest in the highest OM treatments. OM concentration also influenced total macroinvertebrate abundance which was greater in spring and summer in mesocosms with intermediate and high OM. Fish abundance was not significantly affected by OM concentration, but abundance was greater in ambient (55 fish subsample-1) compared to heated mesocosms (17 fish subsample-1) and maximum abundance occurred two weeks later compared to heated mesocosms. The results suggest that changes in OM may have a greater effect on shallow lakes than temperature and that phytoplankton, especially cyanobacteria, benefit from intermediate OM concentrations, therefore, nuisance algal blooms might increase in relatively clear shallow eutrophic lakes where DOC concentrations increase.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.04.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.04.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 25 Apr 2022 Estonia, Germany, United Kingdom, Italy, Italy, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | TREICLAKE, UKRI | Marine LTSS: Climate Link..., FCT | LA 1 +1 projectsEC| TREICLAKE ,UKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,FCT| LA 1 ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Chun-Wei Chang; Takeshi Miki; Hao Ye; Sami Souissi; Rita Adrian; Orlane Anneville; Helen Agasild; Syuhei Ban; Yaron Be’eri-Shlevin; Yin-Ru Chiang; Heidrun Feuchtmayr; Gideon Gal; Satoshi Ichise; Maiko Kagami; Michio Kumagai; Xin Liu; Shin-Ichiro S. Matsuzaki; Marina M. Manca; Peeter Nõges; Roberta Piscia; Michela Rogora; Fuh-Kwo Shiah; Stephen J. Thackeray; Claire E. Widdicombe; Jiunn-Tzong Wu; Tamar Zohary; Chih-hao Hsieh;AbstractUntangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass). Consequently, studies that only consider separable, unidirectional effects can produce divergent conclusions and equivocal ecological implications. To address this complexity, we use empirical dynamic modeling to assemble causal networks for 19 natural aquatic ecosystems (N24◦~N58◦) and quantified strengths of feedbacks among phytoplankton diversity, phytoplankton biomass, and environmental factors. Through a cross-system comparison, we identify macroecological patterns; in more diverse, oligotrophic ecosystems, biodiversity effects are more important than environmental effects (nutrients and temperature) as drivers of biomass. Furthermore, feedback strengths vary with productivity. In warm, productive systems, strong nitrate-mediated feedbacks usually prevail, whereas there are strong, phosphate-mediated feedbacks in cold, less productive systems. Our findings, based on recovered feedbacks, highlight the importance of a network view in future ecosystem management.
IRIS Cnr arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03664870Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10492/7311Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Refubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-28761-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03664870Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10492/7311Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Refubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-28761-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Frank Sommer; Heidrun Feuchtmayr; Ulrich Sommer; Thomas Hansen;pmid: 15552056
We used marine phytoplankton from mesocosms seeded with different zooplankton densities to study the impact of mesozooplankton on phytoplankton nutrient limitation. After 7 d of grazing (copepod mesocosms) or 9 d (appendicularian mesocosms) phytoplankton nutrient limitation was studied by enrichment bioassays. After removal of mesozooplankton, bioassay bottles received either no nutrients, phosphorus or nitrogen alone, or a combination of nitrogen and phosphorus and were incubated for 2 d. Phytoplankton reproductive rates in the bottles without nutrient addition were calculated after correction for grazing by ciliates and indicated increasing nitrogen limitation with increasing copepod abundance. No nutrient limitation was found in the appendicularian mesocosms. The increase of nutrient limitation with increasing copepod density seems to be mainly the result of a trophic cascade effect: Copepods released nanoplankton from ciliate grazing pressure, and thereby enhanced nitrogen exhaustion by nanophytoplankton and reduced nitrogen excretion by ciliates. Nitrogen sequestration in copepod biomass, the mechanism predicted by the ecological stoichiometry theory, seems to have been a weaker effect because there was only little copepod growth during the experiment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1078/1434461041844268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1078/1434461041844268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Sweden, France, Italy, Netherlands, France, Italy, Spain, Netherlands, Italy, Norway, United Kingdom, Italy, Netherlands, United Kingdom, Denmark, Belgium, Portugal, Finland, SwedenPublisher:Springer Science and Business Media LLC Funded by:EC | eLTER PLUS, UKRI | UK Status, Change and Pro..., FCT | Centre for Functional Eco...EC| eLTER PLUS ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,FCT| Centre for Functional EcologyD. A. Beaumont; Don Monteith; Herman Hummel; Henning Meesenburg; Audrey Alignier; Filipe Martinho; D. Pallett; Vesela Evtimova; Liat Hadar; Renate Alber; Patricia Cardoso; Francesca Pilotto; Francesca Pilotto; Bogdan Jaroszewicz; Ricardo García-González; Susanne C. Schneider; Radoslav Stanchev; Dāvis Ozoliņš; Luc Barbaro; Daniel Gómez García; Anne Thimonier; Sue Benham; Marcus Schaub; Tanja Pipan; Bachisio Mario Padedda; Karline Soetaert; Juha Pöyry; Daniel Oro; Reima Leinonen; Lisa Sundqvist; Lubos Halada; Gunther Van Ryckegem; Ingrid Kröncke; Agnija Skuja; Elisa Camatti; Gert Van Hoey; Gert Everaert; Christopher Andrews; Vincent Bretagnolle; Miguel Ângelo Pardal; Marco Pansera; Henrik Kalivoda; Ingolf Kühn; Ingolf Kühn; Natalie Beenaerts; Stefan Stoll; Stefan Stoll; Rita Adrian; Thomas C. Jensen; Boris P. Nikolov; Kaisa-Leena Huttunen; David S. Boukal; David S. Boukal; Bruno J. Ens; Roberto Canullo; Stefano Minerbi; Ulf Grandin; Gunta Spriņģe; Julia S. Meyer; Heidrun Feuchtmayr; Samuel Vorhauser; Melinda Halassy; Bruno Petriccione; Jerzy M. Gutowski; Jenni A. Stockan; S. Schafer; Peter Haase; Peter Haase; Jaana Bäck; Inger Kappel Schmidt; Marcel E. Visser;pmid: 32661354
pmc: PMC7359034
AbstractLocal biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17171-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 374 citations 374 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 45visibility views 45 download downloads 72 Powered bymore_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17171-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu