- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Netherlands, France, France, France, United Kingdom, Belgium, Germany, France, France, France, NorwayPublisher:Inter-Research Science Center Thorsten Werner; Geraint A. Tarling; Bettina Meyer; Gennadi Milinevsky; Bjørn A. Krafft; Christian S. Reiss; Stephen Nicol; Nelly Tremblay; Volker Siegel; Philip N. Trathan; E. A. Pakhomov; A. P. Van de Putte; Katrin Schmidt; Jean-Yves Toullec; Emilce Rombolá; V. Cirelli; Enrique Marschoff; H. Tonkes; Matilda Haraldsson; R. Werner; J. J. Groeneveld; So Kawaguchi; Angus Atkinson; Mathias Teschke; Janine Cuzin-Roudy; E. Bravo Rebolledo; A. Lombana; Hauke Flores; Hauke Flores; Sophie Fielding; J.A. van Franeker;Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved
NERC Open Research A... arrow_drop_down Université Grenoble Alpes: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Marine Ecology Progress SeriesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)INRIA a CCSD electronic archive serverArticle . 2012License: CC BYData sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps09831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 272 citations 272 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université Grenoble Alpes: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Marine Ecology Progress SeriesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)INRIA a CCSD electronic archive serverArticle . 2012License: CC BYData sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps09831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Netherlands, France, France, France, United Kingdom, Belgium, Germany, France, France, France, NorwayPublisher:Inter-Research Science Center Thorsten Werner; Geraint A. Tarling; Bettina Meyer; Gennadi Milinevsky; Bjørn A. Krafft; Christian S. Reiss; Stephen Nicol; Nelly Tremblay; Volker Siegel; Philip N. Trathan; E. A. Pakhomov; A. P. Van de Putte; Katrin Schmidt; Jean-Yves Toullec; Emilce Rombolá; V. Cirelli; Enrique Marschoff; H. Tonkes; Matilda Haraldsson; R. Werner; J. J. Groeneveld; So Kawaguchi; Angus Atkinson; Mathias Teschke; Janine Cuzin-Roudy; E. Bravo Rebolledo; A. Lombana; Hauke Flores; Hauke Flores; Sophie Fielding; J.A. van Franeker;Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved
NERC Open Research A... arrow_drop_down Université Grenoble Alpes: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Marine Ecology Progress SeriesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)INRIA a CCSD electronic archive serverArticle . 2012License: CC BYData sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps09831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 272 citations 272 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université Grenoble Alpes: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Marine Ecology Progress SeriesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)INRIA a CCSD electronic archive serverArticle . 2012License: CC BYData sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps09831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2015 Netherlands, Australia, France, Netherlands, Netherlands, United Kingdom, NetherlandsPublisher:IOP Publishing Funded by:ARC | Discovery Early Career Re..., NSF | Physical and Chemical Deg...ARC| Discovery Early Career Researcher Award - Grant ID: DE130101336 ,NSF| Physical and Chemical Degradation of Plastics in the Marine EnvironmentChris Wilcox; Nikolai Maximenko; François Galgani; Britta Denise Hardesty; Laurent Lebreton; David A. Siegel; Marcus Eriksen; Kara Lavender Law; Erik van Sebille; Erik van Sebille; Jan A. van Franeker;handle: 1959.4/unsworks_38951 , 10044/1/27831
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on theNorth Atlantic and North Pacific accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass.Weuse a rigorous statisticalframework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which isonly approximately1%of global plastic waste estimated to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean.
UNSWorks arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27831Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2015License: CC BY NDData sources: Pure Utrecht UniversitySpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/124006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1K citations 1,259 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert UNSWorks arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27831Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2015License: CC BY NDData sources: Pure Utrecht UniversitySpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/124006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2015 Netherlands, Australia, France, Netherlands, Netherlands, United Kingdom, NetherlandsPublisher:IOP Publishing Funded by:ARC | Discovery Early Career Re..., NSF | Physical and Chemical Deg...ARC| Discovery Early Career Researcher Award - Grant ID: DE130101336 ,NSF| Physical and Chemical Degradation of Plastics in the Marine EnvironmentChris Wilcox; Nikolai Maximenko; François Galgani; Britta Denise Hardesty; Laurent Lebreton; David A. Siegel; Marcus Eriksen; Kara Lavender Law; Erik van Sebille; Erik van Sebille; Jan A. van Franeker;handle: 1959.4/unsworks_38951 , 10044/1/27831
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on theNorth Atlantic and North Pacific accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass.Weuse a rigorous statisticalframework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which isonly approximately1%of global plastic waste estimated to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean.
UNSWorks arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27831Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2015License: CC BY NDData sources: Pure Utrecht UniversitySpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/124006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1K citations 1,259 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert UNSWorks arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27831Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2015License: CC BY NDData sources: Pure Utrecht UniversitySpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/124006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Germany, Netherlands, NetherlandsPublisher:Public Library of Science (PLoS) Funded by:NWO | Seabird food chains in th...NWO| Seabird food chains in the Antarctic seasonal sea-ice zone: challenging the dominant role of krillAuthors: Florentino De Souza Silva, A.P.; van Franeker, J.A.; Siegel, V.; Haraldsson, M.; +4 AuthorsFlorentino De Souza Silva, A.P.; van Franeker, J.A.; Siegel, V.; Haraldsson, M.; Strass, V.; Meesters, H.W.G.; Bathmann, U.; Wolff, W.J.;pmid: 22384073
pmc: PMC3285626
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0-2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m(-2) in summer and autumn, and 2.7 individuals m(-2) in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0-2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0-2 m layer were higher than corresponding values from the 0-200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0-200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change.
PLoS ONE arrow_drop_down Electronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0031775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Electronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0031775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Germany, Netherlands, NetherlandsPublisher:Public Library of Science (PLoS) Funded by:NWO | Seabird food chains in th...NWO| Seabird food chains in the Antarctic seasonal sea-ice zone: challenging the dominant role of krillAuthors: Florentino De Souza Silva, A.P.; van Franeker, J.A.; Siegel, V.; Haraldsson, M.; +4 AuthorsFlorentino De Souza Silva, A.P.; van Franeker, J.A.; Siegel, V.; Haraldsson, M.; Strass, V.; Meesters, H.W.G.; Bathmann, U.; Wolff, W.J.;pmid: 22384073
pmc: PMC3285626
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0-2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m(-2) in summer and autumn, and 2.7 individuals m(-2) in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0-2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0-2 m layer were higher than corresponding values from the 0-200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0-200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change.
PLoS ONE arrow_drop_down Electronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0031775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Electronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0031775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2021 Netherlands, Norway, France, Norway, Finland, Australia, Australia, GermanyPublisher:University of California Press Klaus M Meiners; Klaus M Meiners; Melissa Chierici; Delphine Lannuzel; Helena Herr; Helena Herr; Amanda Lynnes; Pat Wongpan; Andy Majewski; Karley Campbell; Maria A. van Leeuwe; Lisa L. Loseto; Lisa L. Loseto; Sébastien Moreau; Agneta Fransson; Lisa A. Miller; Nadja Steiner; Nadja Steiner; Daiki Nomura; Hauke Flores; Eeva Eronen-Rasimus; Eeva Eronen-Rasimus; Stephen J. Insley; Stephen J. Insley; Marianne Falardeau; Jan A. van Franeker; Hanna M. Kauko; Melissa Nacke; Jeff S. Bowman; Letizia Tedesco; Loïc Michel;A rigorous synthesis of the sea-ice ecosystem and linked ecosystem services highlights that the sea-ice ecosystem supports all 4 ecosystem service categories, that sea-ice ecosystems meet the criteria for ecologically or biologically significant marine areas, that global emissions driving climate change are directly linked to the demise of sea-ice ecosystems and its ecosystem services, and that the sea-ice ecosystem deserves specific attention in the evaluation of marine protected area planning. The synthesis outlines (1) supporting services, provided in form of habitat, including feeding grounds and nurseries for microbes, meiofauna, fish, birds and mammals (particularly the key species Arctic cod, Boreogadus saida, and Antarctic krill, Euphausia superba, which are tightly linked to the sea-ice ecosystem and transfer carbon from sea-ice primary producers to higher trophic level fish, mammal species and humans); (2) provisioning services through harvesting and medicinal and genetic resources; (3) cultural services through Indigenous and local knowledge systems, cultural identity and spirituality, and via cultural activities, tourism and research; (4) (climate) regulating services through light regulation, the production of biogenic aerosols, halogen oxidation and the release or uptake of greenhouse gases, for example, carbon dioxide. The ongoing changes in the polar regions have strong impacts on sea-ice ecosystems and associated ecosystem services. While the response of sea-ice–associated primary production to environmental change is regionally variable, the effect on ice-associated mammals and birds is predominantly negative, subsequently impacting human harvesting and cultural services in both polar regions. Conservation can help protect some species and functions. However, the key mitigation measure that can slow the transition to a strictly seasonal ice cover in the Arctic Ocean, reduce the overall loss of sea-ice habitats from the ocean, and thus preserve the unique ecosystem services provided by sea ice and their contributions to human well-being is a reduction in carbon emissions.
Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElementa: Science of the AnthropoceneReview . 2021License: CC BYData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiReview . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.00007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElementa: Science of the AnthropoceneReview . 2021License: CC BYData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiReview . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.00007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2021 Netherlands, Norway, France, Norway, Finland, Australia, Australia, GermanyPublisher:University of California Press Klaus M Meiners; Klaus M Meiners; Melissa Chierici; Delphine Lannuzel; Helena Herr; Helena Herr; Amanda Lynnes; Pat Wongpan; Andy Majewski; Karley Campbell; Maria A. van Leeuwe; Lisa L. Loseto; Lisa L. Loseto; Sébastien Moreau; Agneta Fransson; Lisa A. Miller; Nadja Steiner; Nadja Steiner; Daiki Nomura; Hauke Flores; Eeva Eronen-Rasimus; Eeva Eronen-Rasimus; Stephen J. Insley; Stephen J. Insley; Marianne Falardeau; Jan A. van Franeker; Hanna M. Kauko; Melissa Nacke; Jeff S. Bowman; Letizia Tedesco; Loïc Michel;A rigorous synthesis of the sea-ice ecosystem and linked ecosystem services highlights that the sea-ice ecosystem supports all 4 ecosystem service categories, that sea-ice ecosystems meet the criteria for ecologically or biologically significant marine areas, that global emissions driving climate change are directly linked to the demise of sea-ice ecosystems and its ecosystem services, and that the sea-ice ecosystem deserves specific attention in the evaluation of marine protected area planning. The synthesis outlines (1) supporting services, provided in form of habitat, including feeding grounds and nurseries for microbes, meiofauna, fish, birds and mammals (particularly the key species Arctic cod, Boreogadus saida, and Antarctic krill, Euphausia superba, which are tightly linked to the sea-ice ecosystem and transfer carbon from sea-ice primary producers to higher trophic level fish, mammal species and humans); (2) provisioning services through harvesting and medicinal and genetic resources; (3) cultural services through Indigenous and local knowledge systems, cultural identity and spirituality, and via cultural activities, tourism and research; (4) (climate) regulating services through light regulation, the production of biogenic aerosols, halogen oxidation and the release or uptake of greenhouse gases, for example, carbon dioxide. The ongoing changes in the polar regions have strong impacts on sea-ice ecosystems and associated ecosystem services. While the response of sea-ice–associated primary production to environmental change is regionally variable, the effect on ice-associated mammals and birds is predominantly negative, subsequently impacting human harvesting and cultural services in both polar regions. Conservation can help protect some species and functions. However, the key mitigation measure that can slow the transition to a strictly seasonal ice cover in the Arctic Ocean, reduce the overall loss of sea-ice habitats from the ocean, and thus preserve the unique ecosystem services provided by sea ice and their contributions to human well-being is a reduction in carbon emissions.
Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElementa: Science of the AnthropoceneReview . 2021License: CC BYData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiReview . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.00007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElementa: Science of the AnthropoceneReview . 2021License: CC BYData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiReview . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.00007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | The imperiled role of sea..., NWO | Seabird food chains in th...NWO| The imperiled role of sea ice in supporting the living resources of the polar oceans (Iceflux-NL) ,NWO| Seabird food chains in the Antarctic seasonal sea-ice zone: challenging the dominant role of krillDavid, Carmen; Schaafsma, F.L.; van Franeker, J.A.; Lange, Benjamin; Brandt, A.; Flores, H.;Climate change-related alterations of Antarctic sea-ice habitats will significantly impact the interaction of ice-associated organisms with the environment, with repercussions on ecosystem functioning. The nature of this interaction is poorly understood, particularly during the critical period of winter–spring transition. To investigate the role of sea-ice and underlying water-column properties in structuring under-ice communities during late winter/early spring, we used a Surface and Under Ice Trawl to sample animals and environmental properties in the upper 2-m layer under the sea ice in the northern Weddell Sea from August to October 2013. The area of investigation was largely homogeneous in terms of hydrography and sea-ice coverage. We hypothesised that this apparent homogeneity in the physical regime was mirrored in the structure of the under-ice community. The under-ice community was numerically dominated by the copepods Stephos longipes, Ctenocalanus spp. and Calanus propinquus (altogether 67 %), and furcilia larvae of Antarctic krill Euphausia superba (30 %). In spite of the apparent homogeneity of the environment, abundance and biomass distributions at our sampling stations indicated the presence of three community types, following a geographical gradient in the investigation area: (1) high biomass, krill-dominated in the west, (2) high abundance, copepod-dominated in the east, and (3) low abundance, low biomass at the ice edge. Combined analysis with environmental data indicated that under-ice community structure was correlated with sea-ice coverage, chlorophyll a concentration, and bottom depth. The heterogeneity of the Antarctic under-ice community was probably also driven by other factors, such as advection, sea-ice drift, and seasonal progression. The response of under-ice communities to changing sea-ice habitats may thus considerably vary seasonally and regionally
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-016-1948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-016-1948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | The imperiled role of sea..., NWO | Seabird food chains in th...NWO| The imperiled role of sea ice in supporting the living resources of the polar oceans (Iceflux-NL) ,NWO| Seabird food chains in the Antarctic seasonal sea-ice zone: challenging the dominant role of krillDavid, Carmen; Schaafsma, F.L.; van Franeker, J.A.; Lange, Benjamin; Brandt, A.; Flores, H.;Climate change-related alterations of Antarctic sea-ice habitats will significantly impact the interaction of ice-associated organisms with the environment, with repercussions on ecosystem functioning. The nature of this interaction is poorly understood, particularly during the critical period of winter–spring transition. To investigate the role of sea-ice and underlying water-column properties in structuring under-ice communities during late winter/early spring, we used a Surface and Under Ice Trawl to sample animals and environmental properties in the upper 2-m layer under the sea ice in the northern Weddell Sea from August to October 2013. The area of investigation was largely homogeneous in terms of hydrography and sea-ice coverage. We hypothesised that this apparent homogeneity in the physical regime was mirrored in the structure of the under-ice community. The under-ice community was numerically dominated by the copepods Stephos longipes, Ctenocalanus spp. and Calanus propinquus (altogether 67 %), and furcilia larvae of Antarctic krill Euphausia superba (30 %). In spite of the apparent homogeneity of the environment, abundance and biomass distributions at our sampling stations indicated the presence of three community types, following a geographical gradient in the investigation area: (1) high biomass, krill-dominated in the west, (2) high abundance, copepod-dominated in the east, and (3) low abundance, low biomass at the ice edge. Combined analysis with environmental data indicated that under-ice community structure was correlated with sea-ice coverage, chlorophyll a concentration, and bottom depth. The heterogeneity of the Antarctic under-ice community was probably also driven by other factors, such as advection, sea-ice drift, and seasonal progression. The response of under-ice communities to changing sea-ice habitats may thus considerably vary seasonally and regionally
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-016-1948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-016-1948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Netherlands, France, France, France, United Kingdom, Belgium, Germany, France, France, France, NorwayPublisher:Inter-Research Science Center Thorsten Werner; Geraint A. Tarling; Bettina Meyer; Gennadi Milinevsky; Bjørn A. Krafft; Christian S. Reiss; Stephen Nicol; Nelly Tremblay; Volker Siegel; Philip N. Trathan; E. A. Pakhomov; A. P. Van de Putte; Katrin Schmidt; Jean-Yves Toullec; Emilce Rombolá; V. Cirelli; Enrique Marschoff; H. Tonkes; Matilda Haraldsson; R. Werner; J. J. Groeneveld; So Kawaguchi; Angus Atkinson; Mathias Teschke; Janine Cuzin-Roudy; E. Bravo Rebolledo; A. Lombana; Hauke Flores; Hauke Flores; Sophie Fielding; J.A. van Franeker;Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved
NERC Open Research A... arrow_drop_down Université Grenoble Alpes: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Marine Ecology Progress SeriesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)INRIA a CCSD electronic archive serverArticle . 2012License: CC BYData sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps09831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 272 citations 272 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université Grenoble Alpes: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Marine Ecology Progress SeriesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)INRIA a CCSD electronic archive serverArticle . 2012License: CC BYData sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps09831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Netherlands, France, France, France, United Kingdom, Belgium, Germany, France, France, France, NorwayPublisher:Inter-Research Science Center Thorsten Werner; Geraint A. Tarling; Bettina Meyer; Gennadi Milinevsky; Bjørn A. Krafft; Christian S. Reiss; Stephen Nicol; Nelly Tremblay; Volker Siegel; Philip N. Trathan; E. A. Pakhomov; A. P. Van de Putte; Katrin Schmidt; Jean-Yves Toullec; Emilce Rombolá; V. Cirelli; Enrique Marschoff; H. Tonkes; Matilda Haraldsson; R. Werner; J. J. Groeneveld; So Kawaguchi; Angus Atkinson; Mathias Teschke; Janine Cuzin-Roudy; E. Bravo Rebolledo; A. Lombana; Hauke Flores; Hauke Flores; Sophie Fielding; J.A. van Franeker;Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved
NERC Open Research A... arrow_drop_down Université Grenoble Alpes: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Marine Ecology Progress SeriesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)INRIA a CCSD electronic archive serverArticle . 2012License: CC BYData sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps09831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 272 citations 272 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université Grenoble Alpes: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01250922Data sources: Bielefeld Academic Search Engine (BASE)Marine Ecology Progress SeriesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)INRIA a CCSD electronic archive serverArticle . 2012License: CC BYData sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information CenterNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps09831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2015 Netherlands, Australia, France, Netherlands, Netherlands, United Kingdom, NetherlandsPublisher:IOP Publishing Funded by:ARC | Discovery Early Career Re..., NSF | Physical and Chemical Deg...ARC| Discovery Early Career Researcher Award - Grant ID: DE130101336 ,NSF| Physical and Chemical Degradation of Plastics in the Marine EnvironmentChris Wilcox; Nikolai Maximenko; François Galgani; Britta Denise Hardesty; Laurent Lebreton; David A. Siegel; Marcus Eriksen; Kara Lavender Law; Erik van Sebille; Erik van Sebille; Jan A. van Franeker;handle: 1959.4/unsworks_38951 , 10044/1/27831
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on theNorth Atlantic and North Pacific accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass.Weuse a rigorous statisticalframework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which isonly approximately1%of global plastic waste estimated to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean.
UNSWorks arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27831Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2015License: CC BY NDData sources: Pure Utrecht UniversitySpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/124006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1K citations 1,259 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert UNSWorks arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27831Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2015License: CC BY NDData sources: Pure Utrecht UniversitySpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/124006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2015 Netherlands, Australia, France, Netherlands, Netherlands, United Kingdom, NetherlandsPublisher:IOP Publishing Funded by:ARC | Discovery Early Career Re..., NSF | Physical and Chemical Deg...ARC| Discovery Early Career Researcher Award - Grant ID: DE130101336 ,NSF| Physical and Chemical Degradation of Plastics in the Marine EnvironmentChris Wilcox; Nikolai Maximenko; François Galgani; Britta Denise Hardesty; Laurent Lebreton; David A. Siegel; Marcus Eriksen; Kara Lavender Law; Erik van Sebille; Erik van Sebille; Jan A. van Franeker;handle: 1959.4/unsworks_38951 , 10044/1/27831
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on theNorth Atlantic and North Pacific accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass.Weuse a rigorous statisticalframework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which isonly approximately1%of global plastic waste estimated to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean.
UNSWorks arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27831Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2015License: CC BY NDData sources: Pure Utrecht UniversitySpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/124006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1K citations 1,259 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert UNSWorks arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/27831Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2015License: CC BY NDData sources: Pure Utrecht UniversitySpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/124006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Germany, Netherlands, NetherlandsPublisher:Public Library of Science (PLoS) Funded by:NWO | Seabird food chains in th...NWO| Seabird food chains in the Antarctic seasonal sea-ice zone: challenging the dominant role of krillAuthors: Florentino De Souza Silva, A.P.; van Franeker, J.A.; Siegel, V.; Haraldsson, M.; +4 AuthorsFlorentino De Souza Silva, A.P.; van Franeker, J.A.; Siegel, V.; Haraldsson, M.; Strass, V.; Meesters, H.W.G.; Bathmann, U.; Wolff, W.J.;pmid: 22384073
pmc: PMC3285626
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0-2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m(-2) in summer and autumn, and 2.7 individuals m(-2) in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0-2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0-2 m layer were higher than corresponding values from the 0-200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0-200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change.
PLoS ONE arrow_drop_down Electronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0031775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Electronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0031775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Germany, Netherlands, NetherlandsPublisher:Public Library of Science (PLoS) Funded by:NWO | Seabird food chains in th...NWO| Seabird food chains in the Antarctic seasonal sea-ice zone: challenging the dominant role of krillAuthors: Florentino De Souza Silva, A.P.; van Franeker, J.A.; Siegel, V.; Haraldsson, M.; +4 AuthorsFlorentino De Souza Silva, A.P.; van Franeker, J.A.; Siegel, V.; Haraldsson, M.; Strass, V.; Meesters, H.W.G.; Bathmann, U.; Wolff, W.J.;pmid: 22384073
pmc: PMC3285626
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0-2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m(-2) in summer and autumn, and 2.7 individuals m(-2) in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0-2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0-2 m layer were higher than corresponding values from the 0-200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0-200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change.
PLoS ONE arrow_drop_down Electronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0031775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Electronic Publication Information CenterArticle . 2012Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0031775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2021 Netherlands, Norway, France, Norway, Finland, Australia, Australia, GermanyPublisher:University of California Press Klaus M Meiners; Klaus M Meiners; Melissa Chierici; Delphine Lannuzel; Helena Herr; Helena Herr; Amanda Lynnes; Pat Wongpan; Andy Majewski; Karley Campbell; Maria A. van Leeuwe; Lisa L. Loseto; Lisa L. Loseto; Sébastien Moreau; Agneta Fransson; Lisa A. Miller; Nadja Steiner; Nadja Steiner; Daiki Nomura; Hauke Flores; Eeva Eronen-Rasimus; Eeva Eronen-Rasimus; Stephen J. Insley; Stephen J. Insley; Marianne Falardeau; Jan A. van Franeker; Hanna M. Kauko; Melissa Nacke; Jeff S. Bowman; Letizia Tedesco; Loïc Michel;A rigorous synthesis of the sea-ice ecosystem and linked ecosystem services highlights that the sea-ice ecosystem supports all 4 ecosystem service categories, that sea-ice ecosystems meet the criteria for ecologically or biologically significant marine areas, that global emissions driving climate change are directly linked to the demise of sea-ice ecosystems and its ecosystem services, and that the sea-ice ecosystem deserves specific attention in the evaluation of marine protected area planning. The synthesis outlines (1) supporting services, provided in form of habitat, including feeding grounds and nurseries for microbes, meiofauna, fish, birds and mammals (particularly the key species Arctic cod, Boreogadus saida, and Antarctic krill, Euphausia superba, which are tightly linked to the sea-ice ecosystem and transfer carbon from sea-ice primary producers to higher trophic level fish, mammal species and humans); (2) provisioning services through harvesting and medicinal and genetic resources; (3) cultural services through Indigenous and local knowledge systems, cultural identity and spirituality, and via cultural activities, tourism and research; (4) (climate) regulating services through light regulation, the production of biogenic aerosols, halogen oxidation and the release or uptake of greenhouse gases, for example, carbon dioxide. The ongoing changes in the polar regions have strong impacts on sea-ice ecosystems and associated ecosystem services. While the response of sea-ice–associated primary production to environmental change is regionally variable, the effect on ice-associated mammals and birds is predominantly negative, subsequently impacting human harvesting and cultural services in both polar regions. Conservation can help protect some species and functions. However, the key mitigation measure that can slow the transition to a strictly seasonal ice cover in the Arctic Ocean, reduce the overall loss of sea-ice habitats from the ocean, and thus preserve the unique ecosystem services provided by sea ice and their contributions to human well-being is a reduction in carbon emissions.
Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElementa: Science of the AnthropoceneReview . 2021License: CC BYData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiReview . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.00007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElementa: Science of the AnthropoceneReview . 2021License: CC BYData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiReview . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.00007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2021 Netherlands, Norway, France, Norway, Finland, Australia, Australia, GermanyPublisher:University of California Press Klaus M Meiners; Klaus M Meiners; Melissa Chierici; Delphine Lannuzel; Helena Herr; Helena Herr; Amanda Lynnes; Pat Wongpan; Andy Majewski; Karley Campbell; Maria A. van Leeuwe; Lisa L. Loseto; Lisa L. Loseto; Sébastien Moreau; Agneta Fransson; Lisa A. Miller; Nadja Steiner; Nadja Steiner; Daiki Nomura; Hauke Flores; Eeva Eronen-Rasimus; Eeva Eronen-Rasimus; Stephen J. Insley; Stephen J. Insley; Marianne Falardeau; Jan A. van Franeker; Hanna M. Kauko; Melissa Nacke; Jeff S. Bowman; Letizia Tedesco; Loïc Michel;A rigorous synthesis of the sea-ice ecosystem and linked ecosystem services highlights that the sea-ice ecosystem supports all 4 ecosystem service categories, that sea-ice ecosystems meet the criteria for ecologically or biologically significant marine areas, that global emissions driving climate change are directly linked to the demise of sea-ice ecosystems and its ecosystem services, and that the sea-ice ecosystem deserves specific attention in the evaluation of marine protected area planning. The synthesis outlines (1) supporting services, provided in form of habitat, including feeding grounds and nurseries for microbes, meiofauna, fish, birds and mammals (particularly the key species Arctic cod, Boreogadus saida, and Antarctic krill, Euphausia superba, which are tightly linked to the sea-ice ecosystem and transfer carbon from sea-ice primary producers to higher trophic level fish, mammal species and humans); (2) provisioning services through harvesting and medicinal and genetic resources; (3) cultural services through Indigenous and local knowledge systems, cultural identity and spirituality, and via cultural activities, tourism and research; (4) (climate) regulating services through light regulation, the production of biogenic aerosols, halogen oxidation and the release or uptake of greenhouse gases, for example, carbon dioxide. The ongoing changes in the polar regions have strong impacts on sea-ice ecosystems and associated ecosystem services. While the response of sea-ice–associated primary production to environmental change is regionally variable, the effect on ice-associated mammals and birds is predominantly negative, subsequently impacting human harvesting and cultural services in both polar regions. Conservation can help protect some species and functions. However, the key mitigation measure that can slow the transition to a strictly seasonal ice cover in the Arctic Ocean, reduce the overall loss of sea-ice habitats from the ocean, and thus preserve the unique ecosystem services provided by sea ice and their contributions to human well-being is a reduction in carbon emissions.
Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElementa: Science of the AnthropoceneReview . 2021License: CC BYData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiReview . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.00007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElementa: Science of the AnthropoceneReview . 2021License: CC BYData sources: University of Groningen Research PortalHELDA - Digital Repository of the University of HelsinkiReview . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1525/elementa.2021.00007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | The imperiled role of sea..., NWO | Seabird food chains in th...NWO| The imperiled role of sea ice in supporting the living resources of the polar oceans (Iceflux-NL) ,NWO| Seabird food chains in the Antarctic seasonal sea-ice zone: challenging the dominant role of krillDavid, Carmen; Schaafsma, F.L.; van Franeker, J.A.; Lange, Benjamin; Brandt, A.; Flores, H.;Climate change-related alterations of Antarctic sea-ice habitats will significantly impact the interaction of ice-associated organisms with the environment, with repercussions on ecosystem functioning. The nature of this interaction is poorly understood, particularly during the critical period of winter–spring transition. To investigate the role of sea-ice and underlying water-column properties in structuring under-ice communities during late winter/early spring, we used a Surface and Under Ice Trawl to sample animals and environmental properties in the upper 2-m layer under the sea ice in the northern Weddell Sea from August to October 2013. The area of investigation was largely homogeneous in terms of hydrography and sea-ice coverage. We hypothesised that this apparent homogeneity in the physical regime was mirrored in the structure of the under-ice community. The under-ice community was numerically dominated by the copepods Stephos longipes, Ctenocalanus spp. and Calanus propinquus (altogether 67 %), and furcilia larvae of Antarctic krill Euphausia superba (30 %). In spite of the apparent homogeneity of the environment, abundance and biomass distributions at our sampling stations indicated the presence of three community types, following a geographical gradient in the investigation area: (1) high biomass, krill-dominated in the west, (2) high abundance, copepod-dominated in the east, and (3) low abundance, low biomass at the ice edge. Combined analysis with environmental data indicated that under-ice community structure was correlated with sea-ice coverage, chlorophyll a concentration, and bottom depth. The heterogeneity of the Antarctic under-ice community was probably also driven by other factors, such as advection, sea-ice drift, and seasonal progression. The response of under-ice communities to changing sea-ice habitats may thus considerably vary seasonally and regionally
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-016-1948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-016-1948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | The imperiled role of sea..., NWO | Seabird food chains in th...NWO| The imperiled role of sea ice in supporting the living resources of the polar oceans (Iceflux-NL) ,NWO| Seabird food chains in the Antarctic seasonal sea-ice zone: challenging the dominant role of krillDavid, Carmen; Schaafsma, F.L.; van Franeker, J.A.; Lange, Benjamin; Brandt, A.; Flores, H.;Climate change-related alterations of Antarctic sea-ice habitats will significantly impact the interaction of ice-associated organisms with the environment, with repercussions on ecosystem functioning. The nature of this interaction is poorly understood, particularly during the critical period of winter–spring transition. To investigate the role of sea-ice and underlying water-column properties in structuring under-ice communities during late winter/early spring, we used a Surface and Under Ice Trawl to sample animals and environmental properties in the upper 2-m layer under the sea ice in the northern Weddell Sea from August to October 2013. The area of investigation was largely homogeneous in terms of hydrography and sea-ice coverage. We hypothesised that this apparent homogeneity in the physical regime was mirrored in the structure of the under-ice community. The under-ice community was numerically dominated by the copepods Stephos longipes, Ctenocalanus spp. and Calanus propinquus (altogether 67 %), and furcilia larvae of Antarctic krill Euphausia superba (30 %). In spite of the apparent homogeneity of the environment, abundance and biomass distributions at our sampling stations indicated the presence of three community types, following a geographical gradient in the investigation area: (1) high biomass, krill-dominated in the west, (2) high abundance, copepod-dominated in the east, and (3) low abundance, low biomass at the ice edge. Combined analysis with environmental data indicated that under-ice community structure was correlated with sea-ice coverage, chlorophyll a concentration, and bottom depth. The heterogeneity of the Antarctic under-ice community was probably also driven by other factors, such as advection, sea-ice drift, and seasonal progression. The response of under-ice communities to changing sea-ice habitats may thus considerably vary seasonally and regionally
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-016-1948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-016-1948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu