- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 01 May 2019 Germany, France, France, Australia, France, Italy, Spain, Australia, Spain, United Kingdom, Spain, France, Australia, Australia, France, Spain, Sweden, Italy, Canada, Switzerland, Denmark, Australia, United States, Australia, Australia, Australia, Canada, Spain, Croatia, Croatia, FrancePublisher:Wiley Funded by:SNSF | Bridging biodiversity and..., SNSF | Bridging biodiversity and..., EC | SABER CULTURALSNSF| Bridging biodiversity and ecosystem functioning: a meta-ecosystem perspective ,SNSF| Bridging biodiversity and ecosystem functioning in dendritic networks: a meta-ecosystem perspective ,EC| SABER CULTURALIsabel Pardo; Kate S. Boersma; Vladimir Pešić; Simone D. Langhans; Nick Bond; Pierre Gnohossou; Florian Altermatt; Núria Cid; Elisabeth I. Meyer; Chelsea J. Little; Chelsea J. Little; Marko Miliša; Anna Maria De Girolamo; Sophie Cauvy-Fraunié; Skhumbuzo Kubheka; Núria Bonada; Daniel C. Allan; Oleksandra Shumilova; Oleksandra Shumilova; Oleksandra Shumilova; Fiona Dyer; Annamaria Zoppini; Marcos Moleón; Joanna Blessing; Arturo Elosegi; Michael T. Bogan; Michael Danger; Daniel von Schiller; Rosa Gómez Cerezo; Biel Obrador; Iola G. Boëchat; Shai Arnon; Arnaud Foulquier; Andy Banegas-Medina; Björn Gücker; Andreas Bruder; Manuel A. S. Graça; Rubén del Campo; Rubén del Campo; Stephanie M. Carlson; Angus R. McIntosh; M. M. Sánchez-Montoya; Erin E. Beller; Dominik Zak; Dominik Zak; Dominik Zak; Pablo Rodríguez-Lozano; Rachel Stubbington; Ross Vander Vorste; Mark O. Gessner; Mark O. Gessner; Roland Corti; Juan F. Blanco-Libreros; Clara Mendoza-Lera; Damien Banas; Kate Brintrup; Simone Guareschi; Jason L. Hwan; Robert J. Rolls; Ryan M. Burrows; Alisha L. Steward; Nathan J. Waltham; Christiane Zarfl; María Isabel Arce; María Isabel Arce; Petr Paril; Brian Four; Tommaso Cancellario; Emile Faye; Musa C. Mlambo; Klement Tockner; Klement Tockner; Catherine M. Febria; Catherine M. Febria; Thibault Datry; Melanie L. Blanchette; Ana Savić; Peter M. Negus; Amina Taleb; Lluís Gómez-Gener; Jonathan C. Marshall; Stefan Lorenz; Dev K. Niyogi; Richardo Figueroa; Catherine Leigh; Bianca de Freitas Terra; Athina Papatheodoulou;pmid: 30628191
pmc: PMC6850495
handle: 20.500.14243/353991 , 10171/62971 , 10481/61788 , 11343/272289 , 10072/384353 , 10900/107500
pmid: 30628191
pmc: PMC6850495
handle: 20.500.14243/353991 , 10171/62971 , 10481/61788 , 11343/272289 , 10072/384353 , 10900/107500
AbstractClimate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%–98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.
CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2019Data sources: CORE (RIOXX-UK Aggregator)Université Savoie Mont Blanc: HALArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/272289Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1111/gcb.14537Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2019License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/5944Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2019Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONFachrepositorium LebenswissenschaftenArticle . 2019License: CC BYData sources: Fachrepositorium LebenswissenschaftenPublikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedZurich Open Repository and ArchiveArticle . 2019 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 65visibility views 65 download downloads 45 Powered bymore_vert CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2019Data sources: CORE (RIOXX-UK Aggregator)Université Savoie Mont Blanc: HALArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/272289Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1111/gcb.14537Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2019License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/5944Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2019Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONFachrepositorium LebenswissenschaftenArticle . 2019License: CC BYData sources: Fachrepositorium LebenswissenschaftenPublikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedZurich Open Repository and ArchiveArticle . 2019 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:IOP Publishing Jana Mayer; Rebecca Peters; Jens Bange; Moritz Mauz; Andreas Platis; Christiane Zarfl;Abstract Wind energy (WE) is one of the key renewable energy technologies required to transform the energy sector to reduce climate change. In the global expansion of WE, one main concern is that wind-power parks (WPPs) take up large areas of land, causing conflicts with other uses such as nature conservation. Existing impact analyses for WPPs are mostly restricted to case studies, and it lacks studies that investigate potential impacts at a larger scale because no scientific consensus on the area associated to a WPP exists. This study proposes a continental, GIS-based approach to estimate the area required for proposed onshore WPPs and to estimate their potential overlap with protected areas (PAs) on the African continent. The results of the spatial analysis show that, in total, the currently proposed 149 WPPs would require 852 km2 of land on the African continent, thereof 11 would overlap with PAs. The overlaps sum up to an area of 42 km2, which corresponds to an affected nominal power of 834 MW (5% of the total projected wind power capacity). These findings reveal the need for further purposefully local in-depth analyses to investigate if the WPP can be operated in accordance with the conservation of the PA. This work provides new data and a transferable methodological approach on the expansion of WE and its potential space requirement and contributes to the investigation of potential land-use conflicts of proposed onshore WPPs on a broader scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ada970&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ada970&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 NetherlandsPublisher:PeerJ Authors: Juan Antonio Hernández-Agüero; Mechthilde Falkenhahn; Jessica Hetzer; Karsten Wesche; +2 AuthorsJuan Antonio Hernández-Agüero; Mechthilde Falkenhahn; Jessica Hetzer; Karsten Wesche; Christiane Zarfl; Klement Tockner;Background Oases are azonal, highly productive, densely vegetated areas within drylands, often converted to agriculture, and characterized by significant biocultural diversity. Despite their importance, comprehensive information on the global distribution and biocultural diversity of oases has been lacking. Methods To address this gap, a detailed bibliographic search and random forest modeling were combined to create a global map of oases, with a focus on Asia and North Africa (ANA). Results In the ANA region, oases cover 1.5% of the dryland area and are populated by 150 million people, with an additional 268 million people living nearby and most likely being dependent on them. Globally, oases contain more than 8,200 vertebrate species, of which 13% are classified as threatened. However, less than 0.5% of their total area is currently under protection, making oases one of the least conserved ecosystems worldwide. These findings highlight the distinct biocultural, ecological, and geopolitical importance of oases, which are increasingly threatened by climate change and direct human impacts. Despite their significance, oases remain undervalued, emphasizing an urgent need for developing adaptative strategies to sustainably manage these pivotal ecosystems.
PeerJ arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PeerJ arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Rebecca Peters; Jürgen Berlekamp; Ana Lucía; Vittoria Stefani; Klement Tockner; Christiane Zarfl;doi: 10.3390/su13031514
handle: 10900/118218
Mitigating climate change, while human population and economy are growing globally, requires a bold shift to renewable energy sources. Among renewables, hydropower is currently the most economic and efficient technique. However, due to a lack of impact assessments at the catchment scale in the planning process, the construction of hydropower plants (HPP) may have unexpected ecological, socioeconomic, and political ramifications in the short and in the long term. The Vjosa River, draining parts of Northern Greece and Albania, is one of the few predominantly free-flowing rivers left in Europe; at the same time its catchment is identified an important resource for future hydropower development. While current hydropower plants are located along tributaries, planned HPP would highly impact the free-flowing main stem. Taking the Vjosa catchment as a case study, the aim of this study was to develop a transferable impact assessment that ranks potential hydropower sites according to their projected impacts on a catchment scale. Therefore, we integrated established ecological, social, and economic indicators for all HPP planned in the river catchment, while considering their capacity, and developed a ranking method based on impact categories. For the Vjosa catchment, ten hydropower sites were ranked as very harmful to the environment as well as to society. A sensitivity analysis revealed that this ranking is dependent upon the selection of indicators. Small HPP showed higher cumulative impacts than large HPP, when normalized to capacity. This study empowers decision-makers to compare both the ranked impacts and the generated energy of planned dam projects at the catchment scale.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/3/1514/pdfData sources: Multidisciplinary Digital Publishing InstituteEberhard Karls University Tübingen: Publication SystemArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/3/1514/pdfData sources: Multidisciplinary Digital Publishing InstituteEberhard Karls University Tübingen: Publication SystemArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jeffrey J. Opperman; Rafael R. Camargo; Ariane Laporte-Bisquit; Christiane Zarfl; +1 AuthorsJeffrey J. Opperman; Rafael R. Camargo; Ariane Laporte-Bisquit; Christiane Zarfl; Alexis J. Morgan;doi: 10.3390/w14050721
handle: 10900/148079
Climate change is predicted to drive various changes in hydrology that can translate into risks for river ecosystems and for those who manage rivers, such as for hydropower. Here we use the WWF Water Risk Filter (WRF) and geospatial analysis to screen hydropower projects, both existing (2488 dams) and projected (3700 dams), for a variety of risks at a global scale, focusing on biodiversity risks, hydrological risks (water scarcity and flooding), and how those hydrological risks may shift with climate change, based on three scenarios. Approximately 26% of existing hydropower dams and 23% of projected dams are within river basins that currently have medium to very high risk of water scarcity; 32% and 20% of the existing and projected dams, respectively, are projected to have increased risk by 2050 due to climate change. For flood risk, 75% of existing dams and 83% of projected dams are within river basins with medium to very high risk, and the proportion of hydropower dams in basins with the highest levels of flood risk is projected to increase by nearly twenty times (e.g., from 2% to 36% of dams). In addition, a large proportion of existing (76%) and projected hydropower dams (93%) are located in river basins with high or very high freshwater biodiversity importance. This is a high-level screening, intended to elucidate broad patterns of risk to increase awareness, highlight trends, and guide more detailed studies.
Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/5/721/pdfData sources: Multidisciplinary Digital Publishing InstituteEberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14050721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/5/721/pdfData sources: Multidisciplinary Digital Publishing InstituteEberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14050721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Camargo, Rafael; Opperman, Jeffrey; Laporte-Bisquit, Ariane; Zarfl, Christiane; Morgan, Alexis;This repository hosts the main outputs from an analysis using the WWF Water Risk Filter to demonstrate how one such tool can be used to screen for a variety of risks at a global scale, including risks to riverine ecosystems from both climate change and hydropower as well as risks to hydropower projects — and operators, owners, and investors — from climate change and potential regulatory or reputational risk arising from negative impacts to ecosystems. The study Using the WWF Water Risk Filter to Screen Existing and Projected Hydropower Projects for Climate and Biodiversity Risks (DOI 10.3390/w14050721) was published in the special issue of the MDPI journal Water: "Hydro-Meteorological Hazards under Climate Change". This product incorporates data from the GRanD v1.3 database which is © Global Water System Project (2011), and from the FHReD database beta version, both datasets available at globaldamwatch.org . The source code used in this study is available at https://github.com/rafaexx/hydropowerClimateChange See the interactive maps using this data at https://rcamargo.shinyapps.io/HydropowerClimateChange {"references": ["Lehner, B., C. Reidy Liermann, C. Revenga, C. V\u00f6r\u00f6smarty, B. Fekete, P. Crouzet, P. D\u00f6ll, M. Endejan, K. Frenken, J. Magome, C. Nilsson, J.C. Robertson, R. Rodel, N. Sindorf, and D. Wisser. 2011. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9 (9): 494-502. https://doi.org/10.1890/100125", "Zarfl, C., A.E. Lumsdon, J. Berlekamp, L. Tydecks, and K. Tockner. 2015. A global boom in hydropower dam construction. Aquatic Sciences 77 (1): 161\u2013170. https://doi.org/10.1007/s00027-014-0377-0"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5826187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5826187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 01 May 2019 Germany, France, France, Australia, France, Italy, Spain, Australia, Spain, United Kingdom, Spain, France, Australia, Australia, France, Spain, Sweden, Italy, Canada, Switzerland, Denmark, Australia, United States, Australia, Australia, Australia, Canada, Spain, Croatia, Croatia, FrancePublisher:Wiley Funded by:SNSF | Bridging biodiversity and..., SNSF | Bridging biodiversity and..., EC | SABER CULTURALSNSF| Bridging biodiversity and ecosystem functioning: a meta-ecosystem perspective ,SNSF| Bridging biodiversity and ecosystem functioning in dendritic networks: a meta-ecosystem perspective ,EC| SABER CULTURALIsabel Pardo; Kate S. Boersma; Vladimir Pešić; Simone D. Langhans; Nick Bond; Pierre Gnohossou; Florian Altermatt; Núria Cid; Elisabeth I. Meyer; Chelsea J. Little; Chelsea J. Little; Marko Miliša; Anna Maria De Girolamo; Sophie Cauvy-Fraunié; Skhumbuzo Kubheka; Núria Bonada; Daniel C. Allan; Oleksandra Shumilova; Oleksandra Shumilova; Oleksandra Shumilova; Fiona Dyer; Annamaria Zoppini; Marcos Moleón; Joanna Blessing; Arturo Elosegi; Michael T. Bogan; Michael Danger; Daniel von Schiller; Rosa Gómez Cerezo; Biel Obrador; Iola G. Boëchat; Shai Arnon; Arnaud Foulquier; Andy Banegas-Medina; Björn Gücker; Andreas Bruder; Manuel A. S. Graça; Rubén del Campo; Rubén del Campo; Stephanie M. Carlson; Angus R. McIntosh; M. M. Sánchez-Montoya; Erin E. Beller; Dominik Zak; Dominik Zak; Dominik Zak; Pablo Rodríguez-Lozano; Rachel Stubbington; Ross Vander Vorste; Mark O. Gessner; Mark O. Gessner; Roland Corti; Juan F. Blanco-Libreros; Clara Mendoza-Lera; Damien Banas; Kate Brintrup; Simone Guareschi; Jason L. Hwan; Robert J. Rolls; Ryan M. Burrows; Alisha L. Steward; Nathan J. Waltham; Christiane Zarfl; María Isabel Arce; María Isabel Arce; Petr Paril; Brian Four; Tommaso Cancellario; Emile Faye; Musa C. Mlambo; Klement Tockner; Klement Tockner; Catherine M. Febria; Catherine M. Febria; Thibault Datry; Melanie L. Blanchette; Ana Savić; Peter M. Negus; Amina Taleb; Lluís Gómez-Gener; Jonathan C. Marshall; Stefan Lorenz; Dev K. Niyogi; Richardo Figueroa; Catherine Leigh; Bianca de Freitas Terra; Athina Papatheodoulou;pmid: 30628191
pmc: PMC6850495
handle: 20.500.14243/353991 , 10171/62971 , 10481/61788 , 11343/272289 , 10072/384353 , 10900/107500
pmid: 30628191
pmc: PMC6850495
handle: 20.500.14243/353991 , 10171/62971 , 10481/61788 , 11343/272289 , 10072/384353 , 10900/107500
AbstractClimate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%–98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.
CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2019Data sources: CORE (RIOXX-UK Aggregator)Université Savoie Mont Blanc: HALArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/272289Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1111/gcb.14537Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2019License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/5944Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2019Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONFachrepositorium LebenswissenschaftenArticle . 2019License: CC BYData sources: Fachrepositorium LebenswissenschaftenPublikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedZurich Open Repository and ArchiveArticle . 2019 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 65visibility views 65 download downloads 45 Powered bymore_vert CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2019Data sources: CORE (RIOXX-UK Aggregator)Université Savoie Mont Blanc: HALArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/272289Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1111/gcb.14537Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2019License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/5944Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02181061Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2019Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONFachrepositorium LebenswissenschaftenArticle . 2019License: CC BYData sources: Fachrepositorium LebenswissenschaftenPublikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedZurich Open Repository and ArchiveArticle . 2019 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:IOP Publishing Jana Mayer; Rebecca Peters; Jens Bange; Moritz Mauz; Andreas Platis; Christiane Zarfl;Abstract Wind energy (WE) is one of the key renewable energy technologies required to transform the energy sector to reduce climate change. In the global expansion of WE, one main concern is that wind-power parks (WPPs) take up large areas of land, causing conflicts with other uses such as nature conservation. Existing impact analyses for WPPs are mostly restricted to case studies, and it lacks studies that investigate potential impacts at a larger scale because no scientific consensus on the area associated to a WPP exists. This study proposes a continental, GIS-based approach to estimate the area required for proposed onshore WPPs and to estimate their potential overlap with protected areas (PAs) on the African continent. The results of the spatial analysis show that, in total, the currently proposed 149 WPPs would require 852 km2 of land on the African continent, thereof 11 would overlap with PAs. The overlaps sum up to an area of 42 km2, which corresponds to an affected nominal power of 834 MW (5% of the total projected wind power capacity). These findings reveal the need for further purposefully local in-depth analyses to investigate if the WPP can be operated in accordance with the conservation of the PA. This work provides new data and a transferable methodological approach on the expansion of WE and its potential space requirement and contributes to the investigation of potential land-use conflicts of proposed onshore WPPs on a broader scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ada970&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ada970&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 NetherlandsPublisher:PeerJ Authors: Juan Antonio Hernández-Agüero; Mechthilde Falkenhahn; Jessica Hetzer; Karsten Wesche; +2 AuthorsJuan Antonio Hernández-Agüero; Mechthilde Falkenhahn; Jessica Hetzer; Karsten Wesche; Christiane Zarfl; Klement Tockner;Background Oases are azonal, highly productive, densely vegetated areas within drylands, often converted to agriculture, and characterized by significant biocultural diversity. Despite their importance, comprehensive information on the global distribution and biocultural diversity of oases has been lacking. Methods To address this gap, a detailed bibliographic search and random forest modeling were combined to create a global map of oases, with a focus on Asia and North Africa (ANA). Results In the ANA region, oases cover 1.5% of the dryland area and are populated by 150 million people, with an additional 268 million people living nearby and most likely being dependent on them. Globally, oases contain more than 8,200 vertebrate species, of which 13% are classified as threatened. However, less than 0.5% of their total area is currently under protection, making oases one of the least conserved ecosystems worldwide. These findings highlight the distinct biocultural, ecological, and geopolitical importance of oases, which are increasingly threatened by climate change and direct human impacts. Despite their significance, oases remain undervalued, emphasizing an urgent need for developing adaptative strategies to sustainably manage these pivotal ecosystems.
PeerJ arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PeerJ arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Rebecca Peters; Jürgen Berlekamp; Ana Lucía; Vittoria Stefani; Klement Tockner; Christiane Zarfl;doi: 10.3390/su13031514
handle: 10900/118218
Mitigating climate change, while human population and economy are growing globally, requires a bold shift to renewable energy sources. Among renewables, hydropower is currently the most economic and efficient technique. However, due to a lack of impact assessments at the catchment scale in the planning process, the construction of hydropower plants (HPP) may have unexpected ecological, socioeconomic, and political ramifications in the short and in the long term. The Vjosa River, draining parts of Northern Greece and Albania, is one of the few predominantly free-flowing rivers left in Europe; at the same time its catchment is identified an important resource for future hydropower development. While current hydropower plants are located along tributaries, planned HPP would highly impact the free-flowing main stem. Taking the Vjosa catchment as a case study, the aim of this study was to develop a transferable impact assessment that ranks potential hydropower sites according to their projected impacts on a catchment scale. Therefore, we integrated established ecological, social, and economic indicators for all HPP planned in the river catchment, while considering their capacity, and developed a ranking method based on impact categories. For the Vjosa catchment, ten hydropower sites were ranked as very harmful to the environment as well as to society. A sensitivity analysis revealed that this ranking is dependent upon the selection of indicators. Small HPP showed higher cumulative impacts than large HPP, when normalized to capacity. This study empowers decision-makers to compare both the ranked impacts and the generated energy of planned dam projects at the catchment scale.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/3/1514/pdfData sources: Multidisciplinary Digital Publishing InstituteEberhard Karls University Tübingen: Publication SystemArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/3/1514/pdfData sources: Multidisciplinary Digital Publishing InstituteEberhard Karls University Tübingen: Publication SystemArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Authors: Jeffrey J. Opperman; Rafael R. Camargo; Ariane Laporte-Bisquit; Christiane Zarfl; +1 AuthorsJeffrey J. Opperman; Rafael R. Camargo; Ariane Laporte-Bisquit; Christiane Zarfl; Alexis J. Morgan;doi: 10.3390/w14050721
handle: 10900/148079
Climate change is predicted to drive various changes in hydrology that can translate into risks for river ecosystems and for those who manage rivers, such as for hydropower. Here we use the WWF Water Risk Filter (WRF) and geospatial analysis to screen hydropower projects, both existing (2488 dams) and projected (3700 dams), for a variety of risks at a global scale, focusing on biodiversity risks, hydrological risks (water scarcity and flooding), and how those hydrological risks may shift with climate change, based on three scenarios. Approximately 26% of existing hydropower dams and 23% of projected dams are within river basins that currently have medium to very high risk of water scarcity; 32% and 20% of the existing and projected dams, respectively, are projected to have increased risk by 2050 due to climate change. For flood risk, 75% of existing dams and 83% of projected dams are within river basins with medium to very high risk, and the proportion of hydropower dams in basins with the highest levels of flood risk is projected to increase by nearly twenty times (e.g., from 2% to 36% of dams). In addition, a large proportion of existing (76%) and projected hydropower dams (93%) are located in river basins with high or very high freshwater biodiversity importance. This is a high-level screening, intended to elucidate broad patterns of risk to increase awareness, highlight trends, and guide more detailed studies.
Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/5/721/pdfData sources: Multidisciplinary Digital Publishing InstituteEberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14050721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/5/721/pdfData sources: Multidisciplinary Digital Publishing InstituteEberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14050721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Camargo, Rafael; Opperman, Jeffrey; Laporte-Bisquit, Ariane; Zarfl, Christiane; Morgan, Alexis;This repository hosts the main outputs from an analysis using the WWF Water Risk Filter to demonstrate how one such tool can be used to screen for a variety of risks at a global scale, including risks to riverine ecosystems from both climate change and hydropower as well as risks to hydropower projects — and operators, owners, and investors — from climate change and potential regulatory or reputational risk arising from negative impacts to ecosystems. The study Using the WWF Water Risk Filter to Screen Existing and Projected Hydropower Projects for Climate and Biodiversity Risks (DOI 10.3390/w14050721) was published in the special issue of the MDPI journal Water: "Hydro-Meteorological Hazards under Climate Change". This product incorporates data from the GRanD v1.3 database which is © Global Water System Project (2011), and from the FHReD database beta version, both datasets available at globaldamwatch.org . The source code used in this study is available at https://github.com/rafaexx/hydropowerClimateChange See the interactive maps using this data at https://rcamargo.shinyapps.io/HydropowerClimateChange {"references": ["Lehner, B., C. Reidy Liermann, C. Revenga, C. V\u00f6r\u00f6smarty, B. Fekete, P. Crouzet, P. D\u00f6ll, M. Endejan, K. Frenken, J. Magome, C. Nilsson, J.C. Robertson, R. Rodel, N. Sindorf, and D. Wisser. 2011. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9 (9): 494-502. https://doi.org/10.1890/100125", "Zarfl, C., A.E. Lumsdon, J. Berlekamp, L. Tydecks, and K. Tockner. 2015. A global boom in hydropower dam construction. Aquatic Sciences 77 (1): 161\u2013170. https://doi.org/10.1007/s00027-014-0377-0"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5826187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5826187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu