- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 Netherlands, Denmark, Germany, FinlandPublisher:Elsevier BV Funded by:EC | IMPRESSIONSEC| IMPRESSIONSJulien Minet; Kurt Christian Kersebaum; Françoise Ruget; A.J.W. de Wit; C. Nendel; Taru Palosuo; Marco Bindi; Holger Hoffmann; Zacharias Steinmetz; Piotr Baranowski; Nina Pirttioja; Pierre Stratonovitch; Iwan Supit; F. Ewert; Davide Cammarano; Mikhail A. Semenov; Roberto Ferrise; Reimund P. Rötter; Margarita Ruiz-Ramos; Manuel Montesino; Fulu Tao; František Jurečka; František Jurečka; Samuel Buis; Alfredo Rodríguez; Alfredo Rodríguez; Marcos Lana; Stefan Fronzek; John R. Porter; Jukka Höhn; Benjamin Dumont; Altaaf Mechiche-Alami; Ignacio J. Lorite; Yi Chen; Thomas Gaiser; Jaromir Krzyszczak; Timothy R. Carter; Miroslav Trnka; Miroslav Trnka; P. Hlavinka; P. Hlavinka;Climate change is expected to severely affect cropping systems and food production in many parts of the world unless local adaptation can ameliorate these impacts. Ensembles of crop simulation models can be useful tools for assessing if proposed adaptation options are capable of achieving target yields, whilst also quantifying the share of uncertainty in the simulated crop impact resulting from the crop models themselves. Although some studies have analysed the influence of ensemble size on model outcomes, the effect of ensemble composition has not yet been properly appraised. Moreover, results and derived recommendations typically rely on averaged ensemble simulation results without accounting sufficiently for the spread of model outcomes. Therefore, we developed an Ensemble Outcome Agreement (EOA) index, which analyses the effect of changes in composition and size of a multi-model ensemble (MME) to evaluate the level of agreement between MME outcomes with respect to a given hypothesis (e.g. that adaptation measures result in positive crop responses). We analysed the recommendations of a previous study performed with an ensemble of 17 crop models and testing 54 adaptation options for rainfed winter wheat (Triticum aestivum L.) at Lleida (NE Spain) under perturbed conditions of temperature, precipitation and atmospheric CO2 concentration. Our results confirmed that most adaptations recommended in the previous study have a positive effect. However, we also showed that some options did not remain recommendable in specific conditions if different ensembles were considered. Using EOA, we were able to identify the adaptation options for which there is high confidence in their effectiveness at enhancing yields, even under severe climate perturbations. These include substituting spring wheat for winter wheat combined with earlier sowing dates and standard or longer duration cultivars, or introducing supplementary irrigation, the latter increasing EOA values in all cases. There is low confidence in recovering yields to baseline levels, although this target could be attained for some adaptation options under moderate climate perturbations. Recommendations derived from such robust results may provide crucial information for stakeholders seeking to implement adaptation measures.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.09.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.09.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 France, Netherlands, Germany, Italy, Italy, Finland, SpainPublisher:Inter-Research Science Center Funded by:AKA | Pathways linking uncertai..., EC | IMPRESSIONS, AKA | Pathways for linking unce... +2 projectsAKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Assessing limits of adaptation to climate change and opportunities for resilience to be enhanced (A-LA-CARTE) / Consortium: A-LA-CARTE ,AKA| Assessing limits of adaptation to climate change and opportunities for resilience to be enhanced (A-LA-CARTE) / Consortium: A-LA-CARTEAlessia Perego; Marco Acutis; Holger Hoffmann; Miroslav Trnka; Piotr Baranowski; Cezary Sławiński; Christoph Müller; Lianhai Wu; Bruno Basso; Mattia Sanna; Claas Nendel; Louis François; Pierre Stratonovitch; Kurt Christian Kersebaum; Alfredo Rodríguez; Zhigan Zhao; Zhigan Zhao; Per Bodin; Reimund P. Rötter; Marco Bindi; Davide Cammarano; Marie-France Destain; Mikhail A. Semenov; Taru Palosuo; Katharina Waha; Katharina Waha; Samuel Buis; Julien Minet; Enli Wang; Senthold Asseng; Frank Ewert; Chris Kollas; Margarita Ruiz-Ramos; Françoise Ruget; Ingrid Jacquemin; Petr Hlavinka; M. I. Mínguez; Ignacio J. Lorite; Thomas Gaiser; Paola A. Deligios; Jaromir Krzyszczak; Nina Pirttioja; Marco Moriondo; Benjamin Dumont; Stefan Fronzek; Manuel Montesino; Fulu Tao; Iwan Supit; Roberto Ferrise; Isik Öztürk; Timothy R. Carter; Alex C. Ruane; Alex C. Ruane;doi: 10.3354/cr01322
handle: 2434/349558
This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.
Archivio Istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FinlandPublisher:Springer Science and Business Media LLC Funded by:AKA | Diversifying cropping sys..., AKA | Pathways linking uncertai..., EC | IMPRESSIONS +2 projectsAKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA) ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Adapt-FIRST: Adapting to climate change risks in Finland: an Impact Response surface STudyHeikki S. Lehtonen; Jyrki Aakkula; Stefan Fronzek; Janne Helin; Mikael Hildén; Suvi Huttunen; Minna Kaljonen; Jyrki Niemi; Taru Palosuo; Nina Pirttioja; Pasi Rikkonen; Vilja Varho; Timothy R. Carter;AbstractShared socioeconomic pathways (SSPs), developed at global scale, comprise narrative descriptions and quantifications of future world developments that are intended for climate change scenario analysis. However, their extension to national and regional scales can be challenging. Here, we present SSP narratives co-developed with stakeholders for the agriculture and food sector in Finland. These are derived from intensive discussions at a workshop attended by approximately 39 participants offering a range of sectoral perspectives. Using general background descriptions of the SSPs for Europe, facilitated discussions were held in parallel for each of four SSPs reflecting very different contexts for the development of the sector up to 2050 and beyond. Discussions focused on five themes from the perspectives of consumers, producers and policy-makers, included a joint final session and allowed for post-workshop feedback. Results reflect careful sector-based, national-level interpretations of the global SSPs from which we have constructed consensus narratives. Our results also show important critical remarks and minority viewpoints. Interesting features of the Finnish narratives compared to the global SSP narratives include greater emphasis on environmental quality; significant land abandonment in SSPs with reduced livestock production and increased plant-based diets; continued need for some farm subsidies across all SSPs and opportunities for diversifying domestic production under scenarios of restricted trade. Our results can contribute to the development of more detailed national long-term scenarios for food and agriculture that are both relevant for local stakeholders and researchers as well as being consistent with global scenarios being applied internationally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01734-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01734-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, France, DenmarkPublisher:Elsevier BV Funded by:SGOV | VARIABILIDAD CLIMATICA MU..., AKA | Pathways linking uncertai..., EC | IMPRESSIONS +1 projectsSGOV| VARIABILIDAD CLIMATICA MULTIESCALAR. IMPACTOS AGRICOLAS Y ECONOMICOS. II EVALUACION INTEGRADA DE RIESGOS CLIMATICOS Y ECONOMICOS: ADAPTACION DE SISTEMAS AGRICOLAS EN ESPAÑA ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESRuiz-Ramos, M.; Ferrise, R.; Rodriguez, A.; Lorite, I. J.; Bindi, M.; Carter, Tim R.; Fronzek, Stefan; Palosuo, T.; Pirttioja, Nina; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J. G.; Jurecka, F.; Kersebaum, K. C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J. R.; Ruget, F.; Semenov, M. A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter; R. P.;Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T), [CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty.
Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:Elsevier BV Palosuo, Taru; Fronzek, Stefan; Räisänen, Jouni; Rötter, Reimund P.; Carter; Timothy, R.; Pirttioja, Nina;Abstract Conventional methods of modelling impacts of future climate change on crop yields often rely on a limited selection of projections for representing uncertainties in future climate. However, large ensembles of climate projections offer an opportunity to estimate yield responses probabilistically. This study demonstrates an approach to probabilistic yield estimation using impact response surfaces (IRSs). These are constructed from a set of sensitivity simulations that explore yield responses to a wide range of changes in temperature and precipitation. Options for adaptation and different levels of future atmospheric carbon dioxide concentration [CO2] defined by representative concentration pathways (RCP4.5 and RCP8.5) were also considered. Model-based IRSs were combined with probabilistic climate projections to estimate impact likelihoods for yields of spring barley (Hordeum vulgare L.) in Finland during the 21st century. Probabilistic projections of climate for the same RCPs were overlaid on IRSs for corresponding [CO2] levels throughout the century and likelihoods of yield shortfall calculated with respect to a threshold mean yield for the baseline (1981–2010). Results suggest that cultivars combining short pre- and long post-anthesis phases together with earlier sowing dates produce the highest yields and smallest likelihoods of yield shortfall under future scenarios. Higher [CO2] levels generally compensate for yield losses due to warming under the RCPs. Yet, this does not happen fully under the more moderate warming of RCP4.5 with a weaker rise in [CO2], where there is a chance of yield shortfall throughout the century. Under the stronger warming but more rapid [CO2] increase of RCP8.5, the likelihood of yield shortfall drops to zero from mid-century onwards. Whilst the incremental IRS-based approach simplifies the temporal and cross-variable complexities of projected climate, it was found to offer a close approximation of evolving future likelihoods of yield impacts in comparison to a more conventional scenario-based approach. The IRS approach is scenario-neutral and existing plots can be used in combination with any new scenario that falls within the sensitivity range without the need to perform new runs with the impact model. A single crop model is used for demonstration, but an ensemble IRS approach could additionally capture impact model uncertainties.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, United States, Spain, Netherlands, Italy, Germany, Denmark, FrancePublisher:Elsevier BV Funded by:MIUR, AKA | Pathways linking uncertai..., EC | IMPRESSIONS +2 projectsMIUR ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESM. Ines Minguez; Katharina Waha; Katharina Waha; Senthold Asseng; Cezary Sławiński; Lianhai Wu; Marie-France Destain; Alex C. Ruane; Iwan Supit; Roberto Ferrise; Julien Minet; Per Bodin; Stefan Fronzek; Piotr Baranowski; Françoise Ruget; Louis François; Taru Palosuo; Isik Öztürk; Margarita Ruiz-Ramos; Mattia Sanna; Ingrid Jacquemin; Kurt Christian Kersebaum; Thomas Gaiser; Paola A. Deligios; Manuel Montesino; Fulu Tao; Nina Pirttioja; Jaromir Krzyszczak; Davide Cammarano; Mikhail A. Semenov; Marco Moriondo; Alfredo Rodríguez; Christoph Müller; Samuel Buis; Alessia Perego; Frank Ewert; Chris Kollas; Marco Acutis; Claas Nendel; Petr Hlavinka; Timothy R. Carter; Marco Bindi; Ignacio J. Lorite; Enli Wang; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Bruno Basso; Benjamin Dumont; Holger Hoffmann; Reimund P. Rötter; Miroslav Trnka;handle: 2434/616106
Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9°C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 Netherlands, Denmark, Germany, FinlandPublisher:Elsevier BV Funded by:EC | IMPRESSIONSEC| IMPRESSIONSJulien Minet; Kurt Christian Kersebaum; Françoise Ruget; A.J.W. de Wit; C. Nendel; Taru Palosuo; Marco Bindi; Holger Hoffmann; Zacharias Steinmetz; Piotr Baranowski; Nina Pirttioja; Pierre Stratonovitch; Iwan Supit; F. Ewert; Davide Cammarano; Mikhail A. Semenov; Roberto Ferrise; Reimund P. Rötter; Margarita Ruiz-Ramos; Manuel Montesino; Fulu Tao; František Jurečka; František Jurečka; Samuel Buis; Alfredo Rodríguez; Alfredo Rodríguez; Marcos Lana; Stefan Fronzek; John R. Porter; Jukka Höhn; Benjamin Dumont; Altaaf Mechiche-Alami; Ignacio J. Lorite; Yi Chen; Thomas Gaiser; Jaromir Krzyszczak; Timothy R. Carter; Miroslav Trnka; Miroslav Trnka; P. Hlavinka; P. Hlavinka;Climate change is expected to severely affect cropping systems and food production in many parts of the world unless local adaptation can ameliorate these impacts. Ensembles of crop simulation models can be useful tools for assessing if proposed adaptation options are capable of achieving target yields, whilst also quantifying the share of uncertainty in the simulated crop impact resulting from the crop models themselves. Although some studies have analysed the influence of ensemble size on model outcomes, the effect of ensemble composition has not yet been properly appraised. Moreover, results and derived recommendations typically rely on averaged ensemble simulation results without accounting sufficiently for the spread of model outcomes. Therefore, we developed an Ensemble Outcome Agreement (EOA) index, which analyses the effect of changes in composition and size of a multi-model ensemble (MME) to evaluate the level of agreement between MME outcomes with respect to a given hypothesis (e.g. that adaptation measures result in positive crop responses). We analysed the recommendations of a previous study performed with an ensemble of 17 crop models and testing 54 adaptation options for rainfed winter wheat (Triticum aestivum L.) at Lleida (NE Spain) under perturbed conditions of temperature, precipitation and atmospheric CO2 concentration. Our results confirmed that most adaptations recommended in the previous study have a positive effect. However, we also showed that some options did not remain recommendable in specific conditions if different ensembles were considered. Using EOA, we were able to identify the adaptation options for which there is high confidence in their effectiveness at enhancing yields, even under severe climate perturbations. These include substituting spring wheat for winter wheat combined with earlier sowing dates and standard or longer duration cultivars, or introducing supplementary irrigation, the latter increasing EOA values in all cases. There is low confidence in recovering yields to baseline levels, although this target could be attained for some adaptation options under moderate climate perturbations. Recommendations derived from such robust results may provide crucial information for stakeholders seeking to implement adaptation measures.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.09.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.09.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 France, Netherlands, Germany, Italy, Italy, Finland, SpainPublisher:Inter-Research Science Center Funded by:AKA | Pathways linking uncertai..., EC | IMPRESSIONS, AKA | Pathways for linking unce... +2 projectsAKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Assessing limits of adaptation to climate change and opportunities for resilience to be enhanced (A-LA-CARTE) / Consortium: A-LA-CARTE ,AKA| Assessing limits of adaptation to climate change and opportunities for resilience to be enhanced (A-LA-CARTE) / Consortium: A-LA-CARTEAlessia Perego; Marco Acutis; Holger Hoffmann; Miroslav Trnka; Piotr Baranowski; Cezary Sławiński; Christoph Müller; Lianhai Wu; Bruno Basso; Mattia Sanna; Claas Nendel; Louis François; Pierre Stratonovitch; Kurt Christian Kersebaum; Alfredo Rodríguez; Zhigan Zhao; Zhigan Zhao; Per Bodin; Reimund P. Rötter; Marco Bindi; Davide Cammarano; Marie-France Destain; Mikhail A. Semenov; Taru Palosuo; Katharina Waha; Katharina Waha; Samuel Buis; Julien Minet; Enli Wang; Senthold Asseng; Frank Ewert; Chris Kollas; Margarita Ruiz-Ramos; Françoise Ruget; Ingrid Jacquemin; Petr Hlavinka; M. I. Mínguez; Ignacio J. Lorite; Thomas Gaiser; Paola A. Deligios; Jaromir Krzyszczak; Nina Pirttioja; Marco Moriondo; Benjamin Dumont; Stefan Fronzek; Manuel Montesino; Fulu Tao; Iwan Supit; Roberto Ferrise; Isik Öztürk; Timothy R. Carter; Alex C. Ruane; Alex C. Ruane;doi: 10.3354/cr01322
handle: 2434/349558
This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.
Archivio Istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr01322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FinlandPublisher:Springer Science and Business Media LLC Funded by:AKA | Diversifying cropping sys..., AKA | Pathways linking uncertai..., EC | IMPRESSIONS +2 projectsAKA| Diversifying cropping systems for Climate-Smart Agriculture (DivCSA) ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Adapt-FIRST: Adapting to climate change risks in Finland: an Impact Response surface STudyHeikki S. Lehtonen; Jyrki Aakkula; Stefan Fronzek; Janne Helin; Mikael Hildén; Suvi Huttunen; Minna Kaljonen; Jyrki Niemi; Taru Palosuo; Nina Pirttioja; Pasi Rikkonen; Vilja Varho; Timothy R. Carter;AbstractShared socioeconomic pathways (SSPs), developed at global scale, comprise narrative descriptions and quantifications of future world developments that are intended for climate change scenario analysis. However, their extension to national and regional scales can be challenging. Here, we present SSP narratives co-developed with stakeholders for the agriculture and food sector in Finland. These are derived from intensive discussions at a workshop attended by approximately 39 participants offering a range of sectoral perspectives. Using general background descriptions of the SSPs for Europe, facilitated discussions were held in parallel for each of four SSPs reflecting very different contexts for the development of the sector up to 2050 and beyond. Discussions focused on five themes from the perspectives of consumers, producers and policy-makers, included a joint final session and allowed for post-workshop feedback. Results reflect careful sector-based, national-level interpretations of the global SSPs from which we have constructed consensus narratives. Our results also show important critical remarks and minority viewpoints. Interesting features of the Finnish narratives compared to the global SSP narratives include greater emphasis on environmental quality; significant land abandonment in SSPs with reduced livestock production and increased plant-based diets; continued need for some farm subsidies across all SSPs and opportunities for diversifying domestic production under scenarios of restricted trade. Our results can contribute to the development of more detailed national long-term scenarios for food and agriculture that are both relevant for local stakeholders and researchers as well as being consistent with global scenarios being applied internationally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01734-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01734-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, France, DenmarkPublisher:Elsevier BV Funded by:SGOV | VARIABILIDAD CLIMATICA MU..., AKA | Pathways linking uncertai..., EC | IMPRESSIONS +1 projectsSGOV| VARIABILIDAD CLIMATICA MULTIESCALAR. IMPACTOS AGRICOLAS Y ECONOMICOS. II EVALUACION INTEGRADA DE RIESGOS CLIMATICOS Y ECONOMICOS: ADAPTACION DE SISTEMAS AGRICOLAS EN ESPAÑA ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESRuiz-Ramos, M.; Ferrise, R.; Rodriguez, A.; Lorite, I. J.; Bindi, M.; Carter, Tim R.; Fronzek, Stefan; Palosuo, T.; Pirttioja, Nina; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J. G.; Jurecka, F.; Kersebaum, K. C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J. R.; Ruget, F.; Semenov, M. A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter; R. P.;Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T), [CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty.
Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:Elsevier BV Palosuo, Taru; Fronzek, Stefan; Räisänen, Jouni; Rötter, Reimund P.; Carter; Timothy, R.; Pirttioja, Nina;Abstract Conventional methods of modelling impacts of future climate change on crop yields often rely on a limited selection of projections for representing uncertainties in future climate. However, large ensembles of climate projections offer an opportunity to estimate yield responses probabilistically. This study demonstrates an approach to probabilistic yield estimation using impact response surfaces (IRSs). These are constructed from a set of sensitivity simulations that explore yield responses to a wide range of changes in temperature and precipitation. Options for adaptation and different levels of future atmospheric carbon dioxide concentration [CO2] defined by representative concentration pathways (RCP4.5 and RCP8.5) were also considered. Model-based IRSs were combined with probabilistic climate projections to estimate impact likelihoods for yields of spring barley (Hordeum vulgare L.) in Finland during the 21st century. Probabilistic projections of climate for the same RCPs were overlaid on IRSs for corresponding [CO2] levels throughout the century and likelihoods of yield shortfall calculated with respect to a threshold mean yield for the baseline (1981–2010). Results suggest that cultivars combining short pre- and long post-anthesis phases together with earlier sowing dates produce the highest yields and smallest likelihoods of yield shortfall under future scenarios. Higher [CO2] levels generally compensate for yield losses due to warming under the RCPs. Yet, this does not happen fully under the more moderate warming of RCP4.5 with a weaker rise in [CO2], where there is a chance of yield shortfall throughout the century. Under the stronger warming but more rapid [CO2] increase of RCP8.5, the likelihood of yield shortfall drops to zero from mid-century onwards. Whilst the incremental IRS-based approach simplifies the temporal and cross-variable complexities of projected climate, it was found to offer a close approximation of evolving future likelihoods of yield impacts in comparison to a more conventional scenario-based approach. The IRS approach is scenario-neutral and existing plots can be used in combination with any new scenario that falls within the sensitivity range without the need to perform new runs with the impact model. A single crop model is used for demonstration, but an ensemble IRS approach could additionally capture impact model uncertainties.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, United States, Spain, Netherlands, Italy, Germany, Denmark, FrancePublisher:Elsevier BV Funded by:MIUR, AKA | Pathways linking uncertai..., EC | IMPRESSIONS +2 projectsMIUR ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESM. Ines Minguez; Katharina Waha; Katharina Waha; Senthold Asseng; Cezary Sławiński; Lianhai Wu; Marie-France Destain; Alex C. Ruane; Iwan Supit; Roberto Ferrise; Julien Minet; Per Bodin; Stefan Fronzek; Piotr Baranowski; Françoise Ruget; Louis François; Taru Palosuo; Isik Öztürk; Margarita Ruiz-Ramos; Mattia Sanna; Ingrid Jacquemin; Kurt Christian Kersebaum; Thomas Gaiser; Paola A. Deligios; Manuel Montesino; Fulu Tao; Nina Pirttioja; Jaromir Krzyszczak; Davide Cammarano; Mikhail A. Semenov; Marco Moriondo; Alfredo Rodríguez; Christoph Müller; Samuel Buis; Alessia Perego; Frank Ewert; Chris Kollas; Marco Acutis; Claas Nendel; Petr Hlavinka; Timothy R. Carter; Marco Bindi; Ignacio J. Lorite; Enli Wang; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Bruno Basso; Benjamin Dumont; Holger Hoffmann; Reimund P. Rötter; Miroslav Trnka;handle: 2434/616106
Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9°C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu