- home
- Advanced Search
Filters
Year range
-chevron_right GOSDG [Beta]
Country
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 05 Apr 2022 SwitzerlandPublisher:American Chemical Society (ACS) Funded by:EC | SULTANEC| SULTANAuthors: Lugas Raka Adrianto; Stephan Pfister; Stefanie Hellweg;pmid: 35294189
Environmental Science & Technology, 56 (7) ISSN:0013-936X ISSN:1520-5851
Research Collection arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c01786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Collection arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c01786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:International Institute of Refrigeration (IIR) Authors: ADRIANTO L., R.; GRANDJEAN P., A.; SAWALHA, S.;In the process of moving towards sustainable energy systems for future cities, the district heating system will have to be more dynamic and accessible to the different heating sources available in the society. A main potential heat source to be connected to the district heating network is the heat rejected from refrigeration systems in supermarket applications. This paper investigates the main possible scenarios for recovering heat from supermarket refrigeration system with CO2 as the refrigerant. The efficiency of the refrigeration system under the different heat recovery scenarios is studied with the aid of computer modelling. The cost of producing the recoverable heat is calculated and compared to market price from local district heating company. The total energy cost for running the system in the winter season in the different scenarios is also calculated. This study shows that the best scenario is to recover heat for space heating in the supermarket building as a priority and then recover all or part of the remaining available heat to district heating. In an average size supermarket in Sweden, all the space heating demand can be recovered from the refrigeration system with space heat recovery COP (i.e. heating COP) of about 4.5 in average. To produce 1 kW heat supplied to district heating, 2/5 to 1/8 kW of compressor power is used; i.e. district heating recovery COP is 2.5-8. This scenario results in the lowest annual energy cost of the system, about 40% lower than the reference scenario, where the refrigeration system runs at floating condensing and space heating is delivered by district heating.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.gl.2018.1385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.gl.2018.1385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 SwitzerlandPublisher:MDPI AG Funded by:FCT | D4FCT| D4Olimjon Saidmamatov; Nicolas Tetreault; Dilmurad Bekjanov; Elbek Khodjaniyazov; Ergash Ibadullaev; Yuldoshboy Sobirov; Lugas Raka Adrianto;doi: 10.3390/en16073206
The primary aspiration of this paper is to learn about the effects of economic growth, energy consumption, agriculture and irrigation water consumption and agriculture productivity on environmental pollution in five countries of Central Asia. The data cover the period from 1992 to 2020 by applying panel data models, namely the Panel FMOLS, Panel DOLS and Panel ARDL-PMG approaches. The results indicate that there is a positive long-term impact of economic growth, water productivity, energy consumption and electricity production on CO2 emissions while agriculture value added and trade openness have a negative and statistically significant influence on CO2 emissions in Central Asia. Country specific short-run coefficients from Panel ARDL reveal that energy consumption is the main driver for rise in the level of CO2 emissions in the countries under the study. Indeed, country level analysis generates unique nexus correlation among agriculture, energy and environmental degradation in each country of Central Asia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Embargo end date: 18 Jun 2018 Switzerland, SwedenPublisher:ETH Zurich Authors: Raka Adrianto, Lugas; Grandjean, Pierre-Alexandre; Sawalha, Samer;13th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2018). Proceedings Refrigeration Science and Technology
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000568831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000568831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 05 Apr 2022 SwitzerlandPublisher:American Chemical Society (ACS) Funded by:EC | SULTANEC| SULTANAuthors: Lugas Raka Adrianto; Stephan Pfister; Stefanie Hellweg;pmid: 35294189
Environmental Science & Technology, 56 (7) ISSN:0013-936X ISSN:1520-5851
Research Collection arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c01786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Collection arrow_drop_down Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c01786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:International Institute of Refrigeration (IIR) Authors: ADRIANTO L., R.; GRANDJEAN P., A.; SAWALHA, S.;In the process of moving towards sustainable energy systems for future cities, the district heating system will have to be more dynamic and accessible to the different heating sources available in the society. A main potential heat source to be connected to the district heating network is the heat rejected from refrigeration systems in supermarket applications. This paper investigates the main possible scenarios for recovering heat from supermarket refrigeration system with CO2 as the refrigerant. The efficiency of the refrigeration system under the different heat recovery scenarios is studied with the aid of computer modelling. The cost of producing the recoverable heat is calculated and compared to market price from local district heating company. The total energy cost for running the system in the winter season in the different scenarios is also calculated. This study shows that the best scenario is to recover heat for space heating in the supermarket building as a priority and then recover all or part of the remaining available heat to district heating. In an average size supermarket in Sweden, all the space heating demand can be recovered from the refrigeration system with space heat recovery COP (i.e. heating COP) of about 4.5 in average. To produce 1 kW heat supplied to district heating, 2/5 to 1/8 kW of compressor power is used; i.e. district heating recovery COP is 2.5-8. This scenario results in the lowest annual energy cost of the system, about 40% lower than the reference scenario, where the refrigeration system runs at floating condensing and space heating is delivered by district heating.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.gl.2018.1385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.gl.2018.1385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 SwitzerlandPublisher:MDPI AG Funded by:FCT | D4FCT| D4Olimjon Saidmamatov; Nicolas Tetreault; Dilmurad Bekjanov; Elbek Khodjaniyazov; Ergash Ibadullaev; Yuldoshboy Sobirov; Lugas Raka Adrianto;doi: 10.3390/en16073206
The primary aspiration of this paper is to learn about the effects of economic growth, energy consumption, agriculture and irrigation water consumption and agriculture productivity on environmental pollution in five countries of Central Asia. The data cover the period from 1992 to 2020 by applying panel data models, namely the Panel FMOLS, Panel DOLS and Panel ARDL-PMG approaches. The results indicate that there is a positive long-term impact of economic growth, water productivity, energy consumption and electricity production on CO2 emissions while agriculture value added and trade openness have a negative and statistically significant influence on CO2 emissions in Central Asia. Country specific short-run coefficients from Panel ARDL reveal that energy consumption is the main driver for rise in the level of CO2 emissions in the countries under the study. Indeed, country level analysis generates unique nexus correlation among agriculture, energy and environmental degradation in each country of Central Asia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Embargo end date: 18 Jun 2018 Switzerland, SwedenPublisher:ETH Zurich Authors: Raka Adrianto, Lugas; Grandjean, Pierre-Alexandre; Sawalha, Samer;13th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2018). Proceedings Refrigeration Science and Technology
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000568831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000568831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu