- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Antonio Ruotolo; Antonio Ruotolo; D. Busquets; D. Busquets; Vicente Amigó; Daniele Pullini; Gianfranco Innocenti;Abstract In this work, Co/Cu nanowires are fabricated by pulsed electrodeposition from a single bath solution containing both Co and Cu ions. Alternate Co and Cu layers are deposited into the nanopores of track etched polycarbonate templates. Although the feasibility of this process is generally recognized, some important issues such as process reproducibility and how structural defects affect the nanowires arrays’ sensing performances are still open; conditions necessary to turn a this made system into a magnetic field sensor. The present work aims at pushing forward knowledge concerning the nanowires fabrication and defining the best growth parameters; in particular, a tight control of the growth process parameters such as single metal deposition potentials and single cycle deposition durations have been carried out for nanowires of 80 nm diameter and correlated to the system magneto-electric response.
Journal of Magnetism... arrow_drop_down Journal of Magnetism and Magnetic MaterialsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jmmm.2007.02.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Magnetism... arrow_drop_down Journal of Magnetism and Magnetic MaterialsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jmmm.2007.02.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Antonio Ruotolo; Antonio Ruotolo; D. Busquets; D. Busquets; Vicente Amigó; Daniele Pullini; Gianfranco Innocenti;Abstract In this work, Co/Cu nanowires are fabricated by pulsed electrodeposition from a single bath solution containing both Co and Cu ions. Alternate Co and Cu layers are deposited into the nanopores of track etched polycarbonate templates. Although the feasibility of this process is generally recognized, some important issues such as process reproducibility and how structural defects affect the nanowires arrays’ sensing performances are still open; conditions necessary to turn a this made system into a magnetic field sensor. The present work aims at pushing forward knowledge concerning the nanowires fabrication and defining the best growth parameters; in particular, a tight control of the growth process parameters such as single metal deposition potentials and single cycle deposition durations have been carried out for nanowires of 80 nm diameter and correlated to the system magneto-electric response.
Journal of Magnetism... arrow_drop_down Journal of Magnetism and Magnetic MaterialsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jmmm.2007.02.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Magnetism... arrow_drop_down Journal of Magnetism and Magnetic MaterialsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jmmm.2007.02.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu