- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Khuplianlam Tungnung;Abstract Boundaries of nations and states are not demarcated base on climate characteristics, but the generic application of design elements and materials in contiguous regions with antagonistic climates increase energy needs. Assam-type houses designed for warm-humid climate zones increases heating needs in cold-cloudy zones of North-East India. So, the intuitive and rational analysis of critical building elements parametric synergy is a prescient passive design. The method includes survey and analysis of climate and architectural thermal environment, parametric simulations, and synergy analysis. The studies show the evolution of similar design patterns in antagonistic climate zones. Simulation results shows that the integration of direct passive solar heat gain from moderate glazing area on South and West and indoor heat sources with moderate thermal mass heat storage and high envelope insulation are synergetic while the individual effects of only large glazing areas or only high thermal mass aren’t. The process for finding optimum parameters may be further iterated. Passive design entails intuitive architectural ingenuity base on climate and rational parametric synergy to straddle differences between climate and design elements to improve the design process and energy efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Khuplianlam Tungnung;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2025.113515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2025.113515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Khuplianlam Tungnung;Abstract Buildings often have fixed function spaces that are complimentary or incompatible with thermal comfort (18–28 °C). Synergetic relationships ameliorates energy shortage and affords comfort. Galvanized iron roof two-storey houses of North-East India were studied to develop a theory-and-strategy to optimize design process and energy conservation. Methods include affordance theory criticism, surveys, simulations, synergy analysis. Parametric strategy on passive design affordances examines human comfort and temperature on diurnal time scales: Daytime (08–17 h), Evening (17–22 h), Night (22–08 h) in various seasons. Under flexible ventilation, living-dining space (S1) shows optimum temperature ranges: 20–28 °C in autumn (M1), 17–22 °C in winter (M2), and 20–31 °C in summer (M3) due to the complementary combination of passive design elements and can function as bedroom, living-room, kitchen, and social space in most seasons. In the attic-space flexible ventilation shows peak temperatures of 42 °C (autumn) and 48 °C (summer) due to low thermal mass but high thermal conductivity envelopes, and low air-changes rate (0.5 ACR) above 28 °C. Normal ventilations with 30 ACR in autumn, and a combination of 30 ACR (night) and 0.5 ACR (day) in summer reduced maximum temperature to ≤35 °C in autumn, and ≤41 °C in summer. Attic-space (S2) shows ≤29 °C in winter daytime and ≥20 °C in summer nights due to the envelope’s high heat emissivity (0.8) and function as day space in winter and summer bedroom. Shaded veranda (S3) shows low temperature (18–28 °C) in summer evening and afternoon and can function as shaded space for light work and enjoying fresh air. Passive design connotes responsiveness of spaces to the climate, and affordance theory’s complementarity lifestyle adds novelty, and it is critical to energy and space efficiency. Climate analysis affords perceptions of space and climate relationship. Parametric strategy straddles differences between space, climate, and functions to ameliorate energy needs and optimize design process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Khuplianlam Tungnung;Abstract Boundaries of nations and states are not demarcated base on climate characteristics, but the generic application of design elements and materials in contiguous regions with antagonistic climates increase energy needs. Assam-type houses designed for warm-humid climate zones increases heating needs in cold-cloudy zones of North-East India. So, the intuitive and rational analysis of critical building elements parametric synergy is a prescient passive design. The method includes survey and analysis of climate and architectural thermal environment, parametric simulations, and synergy analysis. The studies show the evolution of similar design patterns in antagonistic climate zones. Simulation results shows that the integration of direct passive solar heat gain from moderate glazing area on South and West and indoor heat sources with moderate thermal mass heat storage and high envelope insulation are synergetic while the individual effects of only large glazing areas or only high thermal mass aren’t. The process for finding optimum parameters may be further iterated. Passive design entails intuitive architectural ingenuity base on climate and rational parametric synergy to straddle differences between climate and design elements to improve the design process and energy efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Khuplianlam Tungnung;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2025.113515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2025.113515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Khuplianlam Tungnung;Abstract Buildings often have fixed function spaces that are complimentary or incompatible with thermal comfort (18–28 °C). Synergetic relationships ameliorates energy shortage and affords comfort. Galvanized iron roof two-storey houses of North-East India were studied to develop a theory-and-strategy to optimize design process and energy conservation. Methods include affordance theory criticism, surveys, simulations, synergy analysis. Parametric strategy on passive design affordances examines human comfort and temperature on diurnal time scales: Daytime (08–17 h), Evening (17–22 h), Night (22–08 h) in various seasons. Under flexible ventilation, living-dining space (S1) shows optimum temperature ranges: 20–28 °C in autumn (M1), 17–22 °C in winter (M2), and 20–31 °C in summer (M3) due to the complementary combination of passive design elements and can function as bedroom, living-room, kitchen, and social space in most seasons. In the attic-space flexible ventilation shows peak temperatures of 42 °C (autumn) and 48 °C (summer) due to low thermal mass but high thermal conductivity envelopes, and low air-changes rate (0.5 ACR) above 28 °C. Normal ventilations with 30 ACR in autumn, and a combination of 30 ACR (night) and 0.5 ACR (day) in summer reduced maximum temperature to ≤35 °C in autumn, and ≤41 °C in summer. Attic-space (S2) shows ≤29 °C in winter daytime and ≥20 °C in summer nights due to the envelope’s high heat emissivity (0.8) and function as day space in winter and summer bedroom. Shaded veranda (S3) shows low temperature (18–28 °C) in summer evening and afternoon and can function as shaded space for light work and enjoying fresh air. Passive design connotes responsiveness of spaces to the climate, and affordance theory’s complementarity lifestyle adds novelty, and it is critical to energy and space efficiency. Climate analysis affords perceptions of space and climate relationship. Parametric strategy straddles differences between space, climate, and functions to ameliorate energy needs and optimize design process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu