Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
11 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Edyta Boros-Lajszner;
    Edyta Boros-Lajszner
    ORCID
    Harvested from ORCID Public Data File

    Edyta Boros-Lajszner in OpenAIRE
    orcid Jadwiga Wyszkowska;
    Jadwiga Wyszkowska
    ORCID
    Harvested from ORCID Public Data File

    Jadwiga Wyszkowska in OpenAIRE
    orcid Jan Kucharski;
    Jan Kucharski
    ORCID
    Harvested from ORCID Public Data File

    Jan Kucharski in OpenAIRE

    Wood ash is sometimes used as an alternative to mineral fertilizers; however, there is still a paucity of reliable data concerning its effect on plants—and on biological properties of soil. The present study aimed to determine the possible extent of soil pollution with ash from Salix viminalis that does not disturb the growth of Zea mays L., intended for energetic purposes, in order to identify how the increasing ash doses affect biochemical and physicochemical properties of soil and to finally to establish the neutralizing effects of soil additives, i.e., compost and HumiAgra preparation, on this soil pollutant. The study demonstrated that the heating value of Zea mays L. was stable and not modified by the excess content of ash from Salix viminalis in the soil. This finding points to the feasibility of Zea mays L. cultivation on soils contaminated with ash from Salix viminalis and its use in bio-power engineering. The biomass of the aboveground parts of Zea mays L. was significantly reduced after soil contamination with Salix viminalis ash dose of 20 g kg−1 d.m. soil, whereas the smaller ash doses tested (5–10 g kg−1 d.m. soil) did not impair either the growth or the development of Zea mays L. The ash inhibited activities of all analyzed soil enzymes but increased soil pH and sorption capacity. Fertilization with compost proved more effective in neutralizing the adverse effect of ash on enzymatic activity of the soil.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2023
    Data sources: DOAJ
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2023
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Agata Borowik;
    Agata Borowik
    ORCID
    Harvested from ORCID Public Data File

    Agata Borowik in OpenAIRE
    orcid Jadwiga Wyszkowska;
    Jadwiga Wyszkowska
    ORCID
    Harvested from ORCID Public Data File

    Jadwiga Wyszkowska in OpenAIRE
    orcid Magdalena Zaborowska;
    Magdalena Zaborowska
    ORCID
    Harvested from ORCID Public Data File

    Magdalena Zaborowska in OpenAIRE
    orcid Jan Kucharski;
    Jan Kucharski
    ORCID
    Harvested from ORCID Public Data File

    Jan Kucharski in OpenAIRE

    Cadmium is a non-essential element for proper plant growth and development and is highly toxic to humans and animals, in part because it inters with calcium-dependent processes in living organisms. For this reason, a study was conducted to assess the potential for producing maize (Zea mays) biomass in cadmium-contaminated soil for energy purposes. The energy potential of Zea mays was evaluated by determining the heat of combustion (Q), heating value (Hv), and the amount of energy produced from the biomass. Starch, compost, fermented bark, humic acids, molecular sieve, zeolite, sepiolite, expanded clay, and calcium carbonate were assessed as substances supporting biomass production from Zea mays. The accumulation and redistribution of cadmium in the plant were also investigated. The study was conducted in a vegetation hall as part of a pot experiment. Zea mays was grown in uncontaminated soil and in soil contaminated with 15 mg Cd2+ kg−1. A strong toxic effect of cadmium on the cultivated plants was observed, causing a 62% reduction in the biomass of aerial parts and 61% in the roots. However, it did not alter the heat of combustion and heating value of the aerial part biomass, which were 18.55 and 14.98 MJ kg−1 d.m., respectively. Of the nine substances tested to support biomass production, only four (molecular sieve, compost, HumiAgra, and expanded clay) increased the yield of Zea mays grown in cadmium-contaminated soil. The molecular sieve increased aerial part biomass production by 74%, compost by 67%, expanded clay by 19%, and HumiAgra by 15%, but none of these substances completely eliminated the toxic effects of cadmium on the plant. At the same time, the bioaccumulation factor (BAF) of cadmium was higher in the roots (0.21–0.23) than in the aerial parts (0.04–0.03), with the roots showing greater bioaccumulation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2025
    Data sources: DOAJ
    addClaim
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2025
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jadwiga Wyszkowska;
    Jadwiga Wyszkowska
    ORCID
    Harvested from ORCID Public Data File

    Jadwiga Wyszkowska in OpenAIRE
    orcid Agata Borowik;
    Agata Borowik
    ORCID
    Harvested from ORCID Public Data File

    Agata Borowik in OpenAIRE
    orcid Magdalena Zaborowska;
    Magdalena Zaborowska
    ORCID
    Harvested from ORCID Public Data File

    Magdalena Zaborowska in OpenAIRE
    orcid Jan Kucharski;
    Jan Kucharski
    ORCID
    Harvested from ORCID Public Data File

    Jan Kucharski in OpenAIRE

    One of the major challenges faced by contemporary agriculture is how to achieve better yields of crops and, consequently, higher biomass, even in unfavorable environmental conditions. This challenge corresponds to the assumptions of sustainable development, wherein it is envisaged that plant biomass should be used on a large scale for heat generation or conversion of biofuels. Keeping pace with observed trends, the following study was conducted in order to determine the effect of Cr(VI) on the net calorific value of Zea mays, to assess the impact of this element on soil enzymatic activity, and to identify the effectiveness of compost and humic acids in alleviating possible negative effects of Cr(VI) toxicity. These aims were pursued by setting up a pot experiment, in which soil either uncontaminated or contaminated with increasing doses of Cr(VI) of 0, 15, 30, 45, and 60 mg Cr kg−1 d.m. was submitted to biostimulation with compost and the preparation HumiAgra, a source of humic acids, and cropped with Zea mays. The plant height, yield, and net calorific value of the aerial parts of maize, as well as its root yield, were determined. Additionally, the activity of seven soil enzymes and the values of the impact indices of compost and HumiAgra relative to the analyzed parameters were determined. It was found that Cr(VI) decreased the amount of energy obtained from the plants by decreasing maize biomass, and additionally by distorting the biochemical balance of the soil. Dehydrogenases, urease, and arylsulfatase proved to be particularly sensitive to this element. It was demonstrated that HumiAgra was more effective than compost in mollifying the adverse effects of Cr(VI) on the activity of soil enzymes and, consequently, on the biomass of Zea mays.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2023
    Data sources: DOAJ
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2023
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Edyta Boros-Lajszner; orcid Jadwiga Wyszkowska;
    Jadwiga Wyszkowska
    ORCID
    Harvested from ORCID Public Data File

    Jadwiga Wyszkowska in OpenAIRE
    orcid Agata Borowik;
    Agata Borowik
    ORCID
    Harvested from ORCID Public Data File

    Agata Borowik in OpenAIRE
    orcid Jan Kucharski;
    Jan Kucharski
    ORCID
    Harvested from ORCID Public Data File

    Jan Kucharski in OpenAIRE

    Plants, and microorganisms associated with them, offer an effective tool for removing pollutants, such as heavy metals, from the soil environment. The aim of this study was to determine changes caused by Ni2+, Co2+, and Cd2+ in the genetic diversity of soil-populating bacteria and the effect these heavy metals on the heating value of elongated coach grass (Elymus elongatus L.) and maize (Zea mays L.). Microorganisms support plants in removing heavy metals from soil. These plants can then be used for energetic purposes. The study aim was accomplished by determining counts of microorganisms and their resistance (RS) to Ni2+, Co2+, Cd2+, their colony development index (CD), ecophysiological diversity index (EP), and diversity established with the next generation sequencing (NGS) method. Further analyses aimed to establish test plants resistance to pollution with heavy metals and their heating value. Organotrophic bacteria turned out to be the most resistant to Co2+, whereas actinobacteria—to Cd2+ effects. At all taxonomic levels, the genetic diversity of bacteria was most adversely influenced by Cd2+ in the soil sown with Zea mays L. Bacteria belonging to Arthrobacter, Rhodoplanes, Kaistobacter, Devosia, Phycicoccus, and Thermomonas genera showed high tolerance to soil pollution with Ni2+, Co2+, and Cd2+, hence they should be perceived as potential sources of microorganisms useful for bioaugmentation of soils polluted with these heavy metals. Ni2+, Co2+, and Cd2+ had no effect on the heating value of Elymus elongatus L. and Zea mays L. The heating value of 1 kg of air-dry biomass of the tested plants was relatively high and ranged from 14.6 to 15.1 MJ. Elymus elongatus L. proved more useful in phytoremediation than Zea mays L.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    21
    citations21
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jadwiga Wyszkowska;
    Jadwiga Wyszkowska
    ORCID
    Harvested from ORCID Public Data File

    Jadwiga Wyszkowska in OpenAIRE
    orcid Edyta Boros-Lajszner;
    Edyta Boros-Lajszner
    ORCID
    Harvested from ORCID Public Data File

    Edyta Boros-Lajszner in OpenAIRE
    orcid Jan Kucharski;
    Jan Kucharski
    ORCID
    Harvested from ORCID Public Data File

    Jan Kucharski in OpenAIRE

    The choice of optimal plant species for phytoremediation and organic fertilization plays an important role in stabilizing the functions of soils contaminated with heavy metals. The influence of nickel, cobalt and cadmium on the biomass yield and calorific value of Festuca rubra, heavy metal concentrations in soil and plants and the microbiological, biochemical and physicochemical proprieties of soil were analyzed in a pot experiment. The tolerance index (TI) describing Festuca rubra’s ability to tolerate heavy metals, as well as the translocation (TF), accumulation (AF) and bioaccumulation (BF) factors of heavy metals in Festuca rubra were calculated. The experiment was conducted in two series: In soil fertilized and not fertilized with compost. Nickel and cobalt significantly inhibited the growth and development of Festuca rubra. The experiment demonstrated that this plant species can be grown on soil contaminated with heavy metals. Festuca rubra contained on average 46.05% C, 34.59% O, 5.91% H, 3.49% N, 0.19% S and 9.76% ash. Festuca rubra has a stable calorific value which is not affected by heavy metals; therefore, biomass harvested from heavy metal-polluted soil can be used for energy generation. The calorific value of Festuca rubra ranged from 15.924 to 16.790 MJ kg−1 plant d.m., and the heat of combustion from 17.696 to 18.576 MJ kg−1. It has a stable calorific value which is not affected by heavy metals, therefore biomass harvested from heavy metal-polluted soil can be used for energy generation. Festuca rubra is particularly useful for the phytostabilization of soil contaminated with cadmium and cobalt. Compost minimizes the adverse effects of heavy metal pollution on the microbiological, biochemical and physicochemical properties of soil.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2022
    Data sources: DOAJ
    addClaim
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2022
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Agata Borowik;
    Agata Borowik
    ORCID
    Harvested from ORCID Public Data File

    Agata Borowik in OpenAIRE
    orcid Jadwiga Wyszkowska;
    Jadwiga Wyszkowska
    ORCID
    Harvested from ORCID Public Data File

    Jadwiga Wyszkowska in OpenAIRE
    orcid Magdalena Zaborowska;
    Magdalena Zaborowska
    ORCID
    Harvested from ORCID Public Data File

    Magdalena Zaborowska in OpenAIRE
    orcid Jan Kucharski;
    Jan Kucharski
    ORCID
    Harvested from ORCID Public Data File

    Jan Kucharski in OpenAIRE

    Soil contaminated with petroleum-derived products should be used to cultivate energy crops. One such crop is Zea mays. Therefore, a study was performed to determine the suitability of Zea mays biomass obtained from gasoline-contaminated soil for energy purposes. The analysis included determining the heat of combustion and calorific value of the biomass, as well as the content of nitrogen, carbon, hydrogen, oxygen, sulfur, and ash in the biomass. Additionally, the suitability of vermiculite, dolomite, perlite, and agrobasalt for the phytostabilization of gasoline-contaminated soil was evaluated. It was found that the application of sorbents to gasoline-contaminated soil significantly reduced the severe negative effects of this petroleum product on the growth and development of Zea mays. Gasoline contamination of the soil caused a significant increase in ash, nitrogen, and sulfur, along with a decrease in carbon and oxygen content. However, it had no negative effect on the heat of combustion or calorific value of the biomass, although it did reduce the energy production from Zea mays biomass due to a reduction in yield. An important achievement of the study is the demonstration that all the applied sorbents have a positive effect on soil stabilization, which in turn enhances the amount of Zea mays biomass harvested and the energy produced from it. The best results were observed after the application of agrobasalt, dolomite, and vermiculite on gasoline-contaminated soil. Therefore, these sorbents can be recommended for the phytostabilization of gasoline-contaminated soil intended for the cultivation of energy crops.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2024
    Data sources: DOAJ
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2024
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Agata Borowik;
    Agata Borowik
    ORCID
    Harvested from ORCID Public Data File

    Agata Borowik in OpenAIRE
    orcid Jadwiga Wyszkowska;
    Jadwiga Wyszkowska
    ORCID
    Harvested from ORCID Public Data File

    Jadwiga Wyszkowska in OpenAIRE
    orcid Magdalena Zaborowska;
    Magdalena Zaborowska
    ORCID
    Harvested from ORCID Public Data File

    Magdalena Zaborowska in OpenAIRE
    orcid Jan Kucharski;
    Jan Kucharski
    ORCID
    Harvested from ORCID Public Data File

    Jan Kucharski in OpenAIRE

    Ensuring a stable and cost-effective energy supply is a major challenge for the International Energy Agency (IEA). Additionally, the effectiveness of vermiculite and dolomite in mitigating the adverse effects of diesel oil, a petroleum-derived product, on plant growth and development, and on the biochemical activity of the soil, were assessed. Therefore, an attempt was made in the study to determine the energy properties of Zea mays, which is suitable for cultivation in contaminated areas. For these purposes, several parameters were analyzed in its biomass, including calorific value (Q), heating value (Hv), energy yield (Yep), ash content, and the presence of carbon (C), hydrogen (H), sulfur (S), nitrogen (N), and oxygen (O). Biochemical activity was measured through the evaluation of soil enzymes serving as indicators for the carbon (dehydrogenases, catalase, β-glucosidase), nitrogen (urease), sulfur (arylsulfatase), and phosphorus (acid and alkaline phosphatase) cycles. The plant greenness index was also determined. It has been demonstrated that diesel oil does not alter the calorific value of Zea mays biomass but significantly reduces the biomass quantity and destabilizes the biochemical properties of the soil. Zea mays contained an average of 6.84% ash, 49.88% C, 5.65% H, 0.17% S, 2.90% N, and 34.57% O. The calorific value of Zea mays ranged from 15.02 to 15.54 MJ kg−1 d.m. of plants, and the heating value ranged from 18.25 to 19.21 MJ kg−1 d.m. of plants. The biomass obtained from contaminated soil is recommended for energy purposes. The sorbents used—vermiculite and dolomite—proved to be less effective in the remediation of soil contaminated with diesel oil.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2024
    Data sources: DOAJ
    addClaim
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2024
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Edyta Boros-Lajszner;
    Edyta Boros-Lajszner
    ORCID
    Harvested from ORCID Public Data File

    Edyta Boros-Lajszner in OpenAIRE
    orcid Jadwiga Wyszkowska;
    Jadwiga Wyszkowska
    ORCID
    Harvested from ORCID Public Data File

    Jadwiga Wyszkowska in OpenAIRE
    orcid Jan Kucharski;
    Jan Kucharski
    ORCID
    Harvested from ORCID Public Data File

    Jan Kucharski in OpenAIRE

    Maize can easily adapt to changing weather conditions, has moderate soil requirements, and offers high green mass productivity. The goals of this study were to assess the possibility of using ash from Carpinus betulus aided by soil amendment with compost and HumiAgra in Zea mays cultivation and to determine the energy potential of maize. Wood ash had a relatively minimal effect on the combustion heat and calorific value of maize biomass. It increased the contents of C, H, S, N, O, and ash in the aerial parts of the maize. In addition, it positively affected the contents of organic carbon, total nitrogen, soil pH, sum of exchangeable base cations, total exchangeable capacity of soil, and degree of soil saturation with alkaline cations. In contrast, it strongly decreased the yield of maize, negatively affected the biochemical activity of the soil, and reduced the hydrolytic acidity of the soil. Soil amendment with compost and HumiAgra had positive effects on the heat of combustion; calorific value; the contents of C, H, S, N, O, and ash in the aerial parts of maize; and on the properties of the soil. In addition, they mitigated the adverse effects of wood ash on maize biomass and the enzymatic properties of the soil.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2024
    Data sources: DOAJ
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2024
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jadwiga Wyszkowska;
    Jadwiga Wyszkowska
    ORCID
    Harvested from ORCID Public Data File

    Jadwiga Wyszkowska in OpenAIRE
    orcid Edyta Boros-Lajszner;
    Edyta Boros-Lajszner
    ORCID
    Harvested from ORCID Public Data File

    Edyta Boros-Lajszner in OpenAIRE
    orcid Jan Kucharski;
    Jan Kucharski
    ORCID
    Harvested from ORCID Public Data File

    Jan Kucharski in OpenAIRE

    The subject of our research was to assess the suitability of maize grown in lead-contaminated soil for energy purposes. Lead is toxic to the natural environment. Therefore, the recultivation of soil polluted with this element is very important in stabilizing the natural environment. In the present research, maize was used as a remediating plant, and its effects were enhanced by soil fertilization with biocompost and biochar. The aim of the research was to determine the influence of Pb2+ on maize biomass, its combustion heat and heating value, and the biochemical and physicochemical properties of the soil. It was accomplished in a pot experiment by testing the effects of 800 mg Pb2+ kg−1 d.m. soil and biocompost and biochar applied of 20 g kg−1 d.m. soil. Lead was found to drastically deteriorate soil quality, which reduced the biomass of maize. Lead negatively affected the activity of the soil enzymes tested and modified the physicochemical properties of the soil. Fertilization with biocompost and biochar mitigated lead-induced interference with soil enzymatic activity. The applied biocomponents also had positive effects on the chemical and physicochemical properties of the soil. Maize cultivated on lead-polluted soil did not lose its energetic properties. The heating value of maize was stable, which shows its potential in the recultivation of lead-contaminated soils.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2024
    Data sources: DOAJ
    addClaim
    10
    citations10
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2024
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jadwiga Wyszkowska;
    Jadwiga Wyszkowska
    ORCID
    Harvested from ORCID Public Data File

    Jadwiga Wyszkowska in OpenAIRE
    orcid Edyta Boros-Lajszner;
    Edyta Boros-Lajszner
    ORCID
    Harvested from ORCID Public Data File

    Edyta Boros-Lajszner in OpenAIRE
    orcid Agata Borowik;
    Agata Borowik
    ORCID
    Harvested from ORCID Public Data File

    Agata Borowik in OpenAIRE
    orcid Jan Kucharski;
    Jan Kucharski
    ORCID
    Harvested from ORCID Public Data File

    Jan Kucharski in OpenAIRE

    Cadmium is an essential element for plant growth and development. Its accumulation in soil is more hazardous to human and animal health than to plants and microorganisms. A pot greenhouse experiment was conducted to determine the usability of Sinapis alba L. and Avena sativa L. for the phytoremediation of soil contaminated with cadmium and to verify cellulose viability in the remediation of soil under cadmium pressure in doses from 4 to 16 mg Cd2+ kg−1 soil d.m. (dry matter) The effect of cadmium on soil microbiome was investigated with the culture method and the variable region sequencing method. Sinapis alba L. and Avena sativa L. were found viable in the phytoremediation of soil contaminated with Cd2+. Avena sativa L. was more potent to accumulate Cd2+ in roots than Sinapis alba L. Although the fertilization of Cd2+- contaminated soil with cellulose stimulated the proliferation of microorganisms, it failed to mitigate the adverse effects of Cd2+ on bacterial diversity. Bacteria from the Sphingomonas, Sphingobium, Achromobacter, and Pseudomonas genera represented the core microbiome of the soils sown with two plant species, contaminated with Cd2+ and fertilized with cellulose. Stimulation of the growth and development of these bacteria may boost the efficacy of phytoremediation of cadmium-contaminated soils with Sinapis alba L. and Avena sativa L.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022
    Data sources: DOAJ
    addClaim
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022
      Data sources: DOAJ
      addClaim
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph