- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Funded by:UKRI | INSPIRE: Interdisciplinar...UKRI| INSPIRE: Interdisciplinary Southampton Partnership for Investigators Researching the EnvironmentAuthors: Karolina M. Zarzyczny; Marc Rius; Suzanne T. Williams; Phillip B. Fenberg;pmid: 38030539
Tropicalisation is a marine phenomenon arising from contemporary climate change, and is characterised by the range expansion of tropical/subtropical species and the retraction of temperate species. Tropicalisation occurs globally and can be detected in both tropical/temperate transition zones and temperate regions. The ecological consequences of tropicalisation range from single-species impacts (e.g., altered behaviour) to whole ecosystem changes (e.g., phase shifts in intertidal and subtidal habitats). Our understanding of the evolutionary consequences of tropicalisation is limited, but emerging evidence suggests that tropicalisation could induce phenotypic change as well as shifts in the genotypic composition of both expanding and retracting species. Given the rapid rate of contemporary climate change, research on tropicalisation focusing on shifts in ecosystem functioning, biodiversity change, and socioeconomic impacts is urgently needed.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2023.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2023.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Chile, United KingdomPublisher:Proceedings of the National Academy of Sciences Ivan D. Haigh; Marc Rius; Marc Rius; Christopher D. McQuaid; Juan Carlos Castilla; Luciano B. Beheregaray; Jamie Hudson; Peter R. Teske;Significance Species with narrow distributions provide unique opportunities for understanding the mechanisms that limit their spread. We studied a marine invader that exhibits ecological dominance within its range and has the capacity to fundamentally alter the coastal habitat when introduced to new locations. We found evidence of the species’ potential to establish itself far beyond its present introduced range from both genomic data and species distribution modeling. Therefore, minor oceanographic changes (due to, for example, contemporary climate change) or alteration to human-mediated dispersal may trigger a large-scale invasion along vast stretches of coastlines. Our work provides a holistic framework to assess potential changes in the distribution of invasive species.
e-Prints Soton arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefPontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022169118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 Powered bymore_vert e-Prints Soton arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefPontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022169118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Oxford University Press (OUP) Authors: Jamie Hudson; Christopher D. McQuaid; Marc Rius; Marc Rius;doi: 10.1111/jeb.13609
pmid: 32096898
AbstractHuman activities alter patterns of biodiversity, particularly through species extinctions and range shifts. Two of these activities are human mediated transfer of species and contemporary climate change, and both allow previously isolated genotypes to come into contact and hybridize, potentially altering speciation rates. Hybrids have been shown to survive environmental conditions not tolerated by either parent, suggesting that, under some circumstances, hybrids may be able to expand their ranges and perform well under rapidly changing conditions. However, studies assessing how hybridization influences contemporary range shifts are scarce. We performed crosses on Pyura herdmani and Pyura stolonifera (Chordata, Tunicata), two closely related marine invertebrate species that are ecologically dominant and can hybridize. These sister species live in sympatry along the coasts of southern Africa, but one has a disjunct distribution that includes northern hemisphere sites. We experimentally assessed the performance of hybrid and parental crosses using different temperature regimes, including temperatures predicted under future climate change scenarios. We found that hybrids showed lower performance than parental crosses at the experimental temperatures, suggesting that hybrids are unlikely to expand their ranges to new environments. In turn, we found that the more widespread species performed better at a wide array of temperatures, indicating that this parental species may cope better with future conditions. This study illustrates how offspring fitness may provide key insights to predict range expansions and how contemporary climate change may mediate both the ability of hybrids to expand their ranges and the occurrence of speciation as a result of hybridization.
e-Prints Soton arrow_drop_down Journal of Evolutionary BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down Journal of Evolutionary BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 France, Spain, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | VECTORS, EC | COCONET, ANR | Hi-Flo +1 projectsEC| VECTORS ,EC| COCONET ,ANR| Hi-Flo ,ANR| HYSEAMarc Rius; Filip Volckaert; Giacomo Bernardi; Xavier Turon; Frédérique Viard; Frédérique Viard;handle: 10261/113417
17 páginas, 4 figuras Over the last 15 years studies on invasion genetics have provided important insights to unravel cryptic diversity, track the origin of colonizers and reveal pathways of introductions. Despite all these advances, to date little is known about how evolutionary processes influence the observed genetic patterns in marine biological invasions. Here, firstly we review the literature on invasion genetics that include samples from European seas. These seas constitute a wide array of unique water masses with diverse degrees of connectivity, and have a long history of species introductions. We found that only a small fraction of the recorded introduced species has been genetically analysed. Furthermore, most studies restrict their approach to describe patterns of cryptic diversity and genetic structure, with the underlying mechanisms involved in the invasion process being largely understudied. Secondly, we analyse how genetic, reproductive and anthropogenic traits shape genetic patterns of marine introduced species. We found that most studies reveal similar genetic diversity values in both native and introduced ranges, report evidence of multiple introductions, and show that genetic patterns in the introduced range are not explained by taxonomic group or reproductive strategy. Finally, we discuss the evolutionary implications derived from genetic patterns observed in non-indigenous species. We identify different scenarios that are determined by propagule pressure, phenotypic plasticity and pre-adaptation, and the effects of selection and genetic admixture. We conclude that there is a need for further investigations of evolutionary mechanisms that affect individual fitness and adaptation to rapid environmental change. Funding was provided by the European Union FP7 project COCONET (7th PM, Grant agreement #287844) and a number of other sources. F.Vi. acknowledges the HiFlo (ANR-08- BLAN-0334) and HySea (ANR-12-BSV7-0011) ANR programmes. X.T. is grateful to the Spanish Ministry of Science projects CTM2010-22218 and CTM2013-48163. The publication of this paper was supported by CONISMA, the Italian National Interuniversity Consortium for Marine Sciences, which received funding from the European Community’s Seventh Framework Programme (FP7/2007- 2013) for the project VECTORS (Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors, Grant agreement #266445, http://www.marine-vectors.eu). This paper stems from the International workshop MOLTOOLS (Molecular Tools for Monitoring Marine Invasive Species), held in Lecce, Italy, in September 2012. Peer reviewed
Biological Invasions arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10530-014-0792-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 88 citations 88 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 51visibility views 51 download downloads 105 Powered bymore_vert Biological Invasions arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10530-014-0792-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Spain, Spain, United Kingdom, Spain, SpainPublisher:Public Library of Science (PLoS) Funded by:EC | COCONET, EC | MARINVASPHYLOGENEC| COCONET ,EC| MARINVASPHYLOGENAuthors: Rius, Marc; Turon, Xavier; Ordóñez, Víctor; Pascual, Marta;In recent years, new analytical tools have allowed researchers to extract historical information contained in molecular data, which has fundamentally transformed our understanding of processes ruling biological invasions. However, the use of these new analytical tools has been largely restricted to studies of terrestrial organisms despite the growing recognition that the sea contains ecosystems that are amongst the most heavily affected by biological invasions, and that marine invasion histories are often remarkably complex. Here, we studied the routes of invasion and colonisation histories of an invasive marine invertebrate Microcosmus squamiger (Ascidiacea) using microsatellite loci, mitochondrial DNA sequence data and 11 worldwide populations. Discriminant analysis of principal components, clustering methods and approximate bayesian computation (ABC) methods showed that the most likely source of the introduced populations was a single admixture event that involved populations from two genetically differentiated ancestral regions--the western and eastern coasts of Australia. The ABC analyses revealed that colonisation of the introduced range of M. squamiger consisted of a series of non-independent introductions along the coastlines of Africa, North America and Europe. Furthermore, we inferred that the sequence of colonisation across continents was in line with historical taxonomic records--first the Mediterranean Sea and South Africa from an unsampled ancestral population, followed by sequential introductions in California and, more recently, the NE Atlantic Ocean. We revealed the most likely invasion history for world populations of M. squamiger, which is broadly characterized by the presence of multiple ancestral sources and non-independent introductions within the introduced range. The results presented here illustrate the complexity of marine invasion routes and identify a cause-effect relationship between human-mediated transport and the success of widespread marine non-indigenous species, which benefit from stepping-stone invasions and admixture processes involving different sources for the spread and expansion of their range.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1371/jour...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0035815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 105visibility views 105 download downloads 91 Powered bymore_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1371/jour...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0035815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Spain, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | COCONET, EC | MARINVASPHYLOGENEC| COCONET ,EC| MARINVASPHYLOGENAuthors: Pérez-Portela, Rocío; Arranz, Vanessa; Rius, Marc; Turon, Xavier;The existence of globally-distributed species with low dispersal capabilities is a paradox that has been explained as a result of human-mediated transport and by hidden diversity in the form of unrecognized cryptic species. Both factors are not mutually exclusive, but relatively few studies have demonstrated the presence of both. Here we analyse the genetic patterns of the colonial ascidian Diplosoma listerianum, a species nowadays distributed globally. The study of a fragment of a mitochondrial gene in localities worldwide revealed the existence of multiple cryptic species. In addition, we found a complex geographic structure and multiple clades occurred in sympatry. One of the species showed strong population structure irrespective of geographical distances, which is coherent with stochastic dispersal linked to human transport. The present study shows the complexity of discerning the role of cryptic diversity from human-driven range shifts worldwide, as well as disentangling the effects of natural and artificial dispersal.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2013 . Peer-reviewedFull-Text: https://eprints.soton.ac.uk/359509/1/P%25C3%25A9rez-Portela%2520et%2520al.%25202013.Sci.Rep.pdfData sources: e-Prints SotonRecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/srep...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep03197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 51visibility views 51 download downloads 55 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2013 . Peer-reviewedFull-Text: https://eprints.soton.ac.uk/359509/1/P%25C3%25A9rez-Portela%2520et%2520al.%25202013.Sci.Rep.pdfData sources: e-Prints SotonRecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/srep...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep03197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Pack, Kathryn E.; Rius, Marc; Mieszkowska, Nova;pmid: 33316607
The current global redistribution of biota is often attributed to two main drivers: contemporary climate change (CCC) and non-indigenous species (NIS). Despite evidence of synergetic effects, however, studies assessing long-term effects of CCC conditions on NIS fitness remain rare. We examined the interactive effects of warming, ocean acidification and reduced salinity on the globally distributed marine NIS Magallana gigas (Pacific oyster) over a ten-month period. Growth, clearance and oxygen consumption rates were measured monthly to assess individual fitness. Lower salinity had a significant, permanent effect on M. gigas, reducing and increasing clearance and oxygen consumption rates, respectively. Neither predicted increases in seawater temperature nor reduced pH had a long-term physiological effect, indicating conditions predicted for 2100 will not affect adult physiology and survival. These results suggest that M. gigas will remain a globally successful NIS and predicted CCC will continue to facilitate their competitive dominance in the near future.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Marine Environmental ResearchArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Marine Environmental ResearchArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Funded by:UKRI | INSPIRE: Interdisciplinar...UKRI| INSPIRE: Interdisciplinary Southampton Partnership for Investigators Researching the EnvironmentAuthors: Karolina M. Zarzyczny; Marc Rius; Suzanne T. Williams; Phillip B. Fenberg;pmid: 38030539
Tropicalisation is a marine phenomenon arising from contemporary climate change, and is characterised by the range expansion of tropical/subtropical species and the retraction of temperate species. Tropicalisation occurs globally and can be detected in both tropical/temperate transition zones and temperate regions. The ecological consequences of tropicalisation range from single-species impacts (e.g., altered behaviour) to whole ecosystem changes (e.g., phase shifts in intertidal and subtidal habitats). Our understanding of the evolutionary consequences of tropicalisation is limited, but emerging evidence suggests that tropicalisation could induce phenotypic change as well as shifts in the genotypic composition of both expanding and retracting species. Given the rapid rate of contemporary climate change, research on tropicalisation focusing on shifts in ecosystem functioning, biodiversity change, and socioeconomic impacts is urgently needed.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2023.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2023.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Chile, United KingdomPublisher:Proceedings of the National Academy of Sciences Ivan D. Haigh; Marc Rius; Marc Rius; Christopher D. McQuaid; Juan Carlos Castilla; Luciano B. Beheregaray; Jamie Hudson; Peter R. Teske;Significance Species with narrow distributions provide unique opportunities for understanding the mechanisms that limit their spread. We studied a marine invader that exhibits ecological dominance within its range and has the capacity to fundamentally alter the coastal habitat when introduced to new locations. We found evidence of the species’ potential to establish itself far beyond its present introduced range from both genomic data and species distribution modeling. Therefore, minor oceanographic changes (due to, for example, contemporary climate change) or alteration to human-mediated dispersal may trigger a large-scale invasion along vast stretches of coastlines. Our work provides a holistic framework to assess potential changes in the distribution of invasive species.
e-Prints Soton arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefPontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022169118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 Powered bymore_vert e-Prints Soton arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefPontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022169118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Oxford University Press (OUP) Authors: Jamie Hudson; Christopher D. McQuaid; Marc Rius; Marc Rius;doi: 10.1111/jeb.13609
pmid: 32096898
AbstractHuman activities alter patterns of biodiversity, particularly through species extinctions and range shifts. Two of these activities are human mediated transfer of species and contemporary climate change, and both allow previously isolated genotypes to come into contact and hybridize, potentially altering speciation rates. Hybrids have been shown to survive environmental conditions not tolerated by either parent, suggesting that, under some circumstances, hybrids may be able to expand their ranges and perform well under rapidly changing conditions. However, studies assessing how hybridization influences contemporary range shifts are scarce. We performed crosses on Pyura herdmani and Pyura stolonifera (Chordata, Tunicata), two closely related marine invertebrate species that are ecologically dominant and can hybridize. These sister species live in sympatry along the coasts of southern Africa, but one has a disjunct distribution that includes northern hemisphere sites. We experimentally assessed the performance of hybrid and parental crosses using different temperature regimes, including temperatures predicted under future climate change scenarios. We found that hybrids showed lower performance than parental crosses at the experimental temperatures, suggesting that hybrids are unlikely to expand their ranges to new environments. In turn, we found that the more widespread species performed better at a wide array of temperatures, indicating that this parental species may cope better with future conditions. This study illustrates how offspring fitness may provide key insights to predict range expansions and how contemporary climate change may mediate both the ability of hybrids to expand their ranges and the occurrence of speciation as a result of hybridization.
e-Prints Soton arrow_drop_down Journal of Evolutionary BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down Journal of Evolutionary BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jeb.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 France, Spain, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | VECTORS, EC | COCONET, ANR | Hi-Flo +1 projectsEC| VECTORS ,EC| COCONET ,ANR| Hi-Flo ,ANR| HYSEAMarc Rius; Filip Volckaert; Giacomo Bernardi; Xavier Turon; Frédérique Viard; Frédérique Viard;handle: 10261/113417
17 páginas, 4 figuras Over the last 15 years studies on invasion genetics have provided important insights to unravel cryptic diversity, track the origin of colonizers and reveal pathways of introductions. Despite all these advances, to date little is known about how evolutionary processes influence the observed genetic patterns in marine biological invasions. Here, firstly we review the literature on invasion genetics that include samples from European seas. These seas constitute a wide array of unique water masses with diverse degrees of connectivity, and have a long history of species introductions. We found that only a small fraction of the recorded introduced species has been genetically analysed. Furthermore, most studies restrict their approach to describe patterns of cryptic diversity and genetic structure, with the underlying mechanisms involved in the invasion process being largely understudied. Secondly, we analyse how genetic, reproductive and anthropogenic traits shape genetic patterns of marine introduced species. We found that most studies reveal similar genetic diversity values in both native and introduced ranges, report evidence of multiple introductions, and show that genetic patterns in the introduced range are not explained by taxonomic group or reproductive strategy. Finally, we discuss the evolutionary implications derived from genetic patterns observed in non-indigenous species. We identify different scenarios that are determined by propagule pressure, phenotypic plasticity and pre-adaptation, and the effects of selection and genetic admixture. We conclude that there is a need for further investigations of evolutionary mechanisms that affect individual fitness and adaptation to rapid environmental change. Funding was provided by the European Union FP7 project COCONET (7th PM, Grant agreement #287844) and a number of other sources. F.Vi. acknowledges the HiFlo (ANR-08- BLAN-0334) and HySea (ANR-12-BSV7-0011) ANR programmes. X.T. is grateful to the Spanish Ministry of Science projects CTM2010-22218 and CTM2013-48163. The publication of this paper was supported by CONISMA, the Italian National Interuniversity Consortium for Marine Sciences, which received funding from the European Community’s Seventh Framework Programme (FP7/2007- 2013) for the project VECTORS (Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors, Grant agreement #266445, http://www.marine-vectors.eu). This paper stems from the International workshop MOLTOOLS (Molecular Tools for Monitoring Marine Invasive Species), held in Lecce, Italy, in September 2012. Peer reviewed
Biological Invasions arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10530-014-0792-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 88 citations 88 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 51visibility views 51 download downloads 105 Powered bymore_vert Biological Invasions arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10530-014-0792-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Spain, Spain, United Kingdom, Spain, SpainPublisher:Public Library of Science (PLoS) Funded by:EC | COCONET, EC | MARINVASPHYLOGENEC| COCONET ,EC| MARINVASPHYLOGENAuthors: Rius, Marc; Turon, Xavier; Ordóñez, Víctor; Pascual, Marta;In recent years, new analytical tools have allowed researchers to extract historical information contained in molecular data, which has fundamentally transformed our understanding of processes ruling biological invasions. However, the use of these new analytical tools has been largely restricted to studies of terrestrial organisms despite the growing recognition that the sea contains ecosystems that are amongst the most heavily affected by biological invasions, and that marine invasion histories are often remarkably complex. Here, we studied the routes of invasion and colonisation histories of an invasive marine invertebrate Microcosmus squamiger (Ascidiacea) using microsatellite loci, mitochondrial DNA sequence data and 11 worldwide populations. Discriminant analysis of principal components, clustering methods and approximate bayesian computation (ABC) methods showed that the most likely source of the introduced populations was a single admixture event that involved populations from two genetically differentiated ancestral regions--the western and eastern coasts of Australia. The ABC analyses revealed that colonisation of the introduced range of M. squamiger consisted of a series of non-independent introductions along the coastlines of Africa, North America and Europe. Furthermore, we inferred that the sequence of colonisation across continents was in line with historical taxonomic records--first the Mediterranean Sea and South Africa from an unsampled ancestral population, followed by sequential introductions in California and, more recently, the NE Atlantic Ocean. We revealed the most likely invasion history for world populations of M. squamiger, which is broadly characterized by the presence of multiple ancestral sources and non-independent introductions within the introduced range. The results presented here illustrate the complexity of marine invasion routes and identify a cause-effect relationship between human-mediated transport and the success of widespread marine non-indigenous species, which benefit from stepping-stone invasions and admixture processes involving different sources for the spread and expansion of their range.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1371/jour...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0035815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 105visibility views 105 download downloads 91 Powered bymore_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1371/jour...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0035815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Spain, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | COCONET, EC | MARINVASPHYLOGENEC| COCONET ,EC| MARINVASPHYLOGENAuthors: Pérez-Portela, Rocío; Arranz, Vanessa; Rius, Marc; Turon, Xavier;The existence of globally-distributed species with low dispersal capabilities is a paradox that has been explained as a result of human-mediated transport and by hidden diversity in the form of unrecognized cryptic species. Both factors are not mutually exclusive, but relatively few studies have demonstrated the presence of both. Here we analyse the genetic patterns of the colonial ascidian Diplosoma listerianum, a species nowadays distributed globally. The study of a fragment of a mitochondrial gene in localities worldwide revealed the existence of multiple cryptic species. In addition, we found a complex geographic structure and multiple clades occurred in sympatry. One of the species showed strong population structure irrespective of geographical distances, which is coherent with stochastic dispersal linked to human transport. The present study shows the complexity of discerning the role of cryptic diversity from human-driven range shifts worldwide, as well as disentangling the effects of natural and artificial dispersal.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2013 . Peer-reviewedFull-Text: https://eprints.soton.ac.uk/359509/1/P%25C3%25A9rez-Portela%2520et%2520al.%25202013.Sci.Rep.pdfData sources: e-Prints SotonRecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/srep...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep03197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 51visibility views 51 download downloads 55 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2013 . Peer-reviewedFull-Text: https://eprints.soton.ac.uk/359509/1/P%25C3%25A9rez-Portela%2520et%2520al.%25202013.Sci.Rep.pdfData sources: e-Prints SotonRecolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/srep...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep03197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Pack, Kathryn E.; Rius, Marc; Mieszkowska, Nova;pmid: 33316607
The current global redistribution of biota is often attributed to two main drivers: contemporary climate change (CCC) and non-indigenous species (NIS). Despite evidence of synergetic effects, however, studies assessing long-term effects of CCC conditions on NIS fitness remain rare. We examined the interactive effects of warming, ocean acidification and reduced salinity on the globally distributed marine NIS Magallana gigas (Pacific oyster) over a ten-month period. Growth, clearance and oxygen consumption rates were measured monthly to assess individual fitness. Lower salinity had a significant, permanent effect on M. gigas, reducing and increasing clearance and oxygen consumption rates, respectively. Neither predicted increases in seawater temperature nor reduced pH had a long-term physiological effect, indicating conditions predicted for 2100 will not affect adult physiology and survival. These results suggest that M. gigas will remain a globally successful NIS and predicted CCC will continue to facilitate their competitive dominance in the near future.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Marine Environmental ResearchArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Marine Environmental ResearchArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu