- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Jamal, T.; Urmee, T.; Calais, M.; Shafiullah, GM; Carter, C.;Abstract Gradual technical advancement and rapidly decreasing costs have led to widespread deployment of solar photovoltaic (PV) systems. In Australia, distributed PV systems make up the vast majority of installed PV capacity. In remote communities, distributed PV systems offer a supplementary solution to existing diesel-based electricity generation. However, remote electricity networks, being different from urban networks primarily due to their limited generation capacity and spinning reserve are likely to be critically affected by the variability characteristics of PV generation. The integration of distributed PV systems into conventional remote electricity networks has noteworthy impacts on their technical and non-technical operations that pose new challenges for PV deployment. Significant technical issues are observed in these networks as PV penetration levels increase, such as reduced power quality, inadequate diesel generator dispatch for spinning reserve, increased complexities in network operation and management, unintended islanding and even system blackouts. Utility adopted operational and control strategies significantly influence PV penetration levels in different remote networks around the world, including Australia. This paper reviews the current electrification scenarios in remote Australian networks and focuses on the impacts and technical challenges of distributed PV deployment and the control strategies adopted by remote area power utilities. Some suggestions and recommendations, such as the development of robust control mechanisms incorporating PV forecasting technology, modern network equipment, real-time measurements and network ancillary services provided by inverter coupled generation systems to enhance networks' operational stability and reliability are also presented. This review is of benefit to scientific researchers, investors and different stakeholders, who wish to have a better understanding of distributed PV systems' deployment scenarios into remote electricity networks. As the inherent characteristics of Australian remote electricity networks are similar to those in African and Asian rural electricity networks; the findings, reviews and recommendations presented are also relevant to those networks.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Jamal, T.; Urmee, T.; Calais, M.; Shafiullah, GM; Carter, C.;Abstract Gradual technical advancement and rapidly decreasing costs have led to widespread deployment of solar photovoltaic (PV) systems. In Australia, distributed PV systems make up the vast majority of installed PV capacity. In remote communities, distributed PV systems offer a supplementary solution to existing diesel-based electricity generation. However, remote electricity networks, being different from urban networks primarily due to their limited generation capacity and spinning reserve are likely to be critically affected by the variability characteristics of PV generation. The integration of distributed PV systems into conventional remote electricity networks has noteworthy impacts on their technical and non-technical operations that pose new challenges for PV deployment. Significant technical issues are observed in these networks as PV penetration levels increase, such as reduced power quality, inadequate diesel generator dispatch for spinning reserve, increased complexities in network operation and management, unintended islanding and even system blackouts. Utility adopted operational and control strategies significantly influence PV penetration levels in different remote networks around the world, including Australia. This paper reviews the current electrification scenarios in remote Australian networks and focuses on the impacts and technical challenges of distributed PV deployment and the control strategies adopted by remote area power utilities. Some suggestions and recommendations, such as the development of robust control mechanisms incorporating PV forecasting technology, modern network equipment, real-time measurements and network ancillary services provided by inverter coupled generation systems to enhance networks' operational stability and reliability are also presented. This review is of benefit to scientific researchers, investors and different stakeholders, who wish to have a better understanding of distributed PV systems' deployment scenarios into remote electricity networks. As the inherent characteristics of Australian remote electricity networks are similar to those in African and Asian rural electricity networks; the findings, reviews and recommendations presented are also relevant to those networks.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) S. M. Ferdous; G. M. Shafiullah; Farhad Shahnia; Rajvikram Madurai Elavarasan; Umashankar Subramaniam;Autonomous microgrids (MGs) are being installed in large remote areas to supply power where access to the utility grid is unavailable or infeasible. The power generation of such standalone MGs is largely dominated by renewable based energy sources where overloading or power deficiencies can be common due to the high intermittency and uncertainty in both load and power generation. Load-shedding is the most common mechanism to alleviate these problems to prevent system instability. To minimize load-shedding, most MGs are equipped with local battery energy storage (BES) systems to provide additional support. Furthermore, in the event of severe overloading or when BES capacity is insufficient to alleviate the overload, neighboring MGs can be provisionally coupled to provide mutual support to each other which is a more effective, economic and reliable approach. Such a coupling is preferred to be via power electronic converters to enhance the autonomy of the MGs. This paper proposes a two-stage, coordinated power sharing strategy among BESs and coupled MGs for overload management in autonomous MGs, through dynamic frequency control. Both local BES and the neighboring MGs can work in conjunction or individually to supply the required overload power demand. For this, BES' state of charge should be above a minimum level and extra power generation capacity needs to be available in the neighboring MGs. A predefined framework with appropriate constraints and conditions, under which the power exchange will take place, are defined and formulated. The proposed mechanism is a decentralized approach, operating based on local frequency and state of charge measurements, and without any data communication amongst the MGs. The dynamic performance of such a network, is evaluated through extensive simulation studies in PSIMR and verifies that the proposed strategy can successfully alleviate the overloading situation in the MGs through proper frequency regulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3004185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3004185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) S. M. Ferdous; G. M. Shafiullah; Farhad Shahnia; Rajvikram Madurai Elavarasan; Umashankar Subramaniam;Autonomous microgrids (MGs) are being installed in large remote areas to supply power where access to the utility grid is unavailable or infeasible. The power generation of such standalone MGs is largely dominated by renewable based energy sources where overloading or power deficiencies can be common due to the high intermittency and uncertainty in both load and power generation. Load-shedding is the most common mechanism to alleviate these problems to prevent system instability. To minimize load-shedding, most MGs are equipped with local battery energy storage (BES) systems to provide additional support. Furthermore, in the event of severe overloading or when BES capacity is insufficient to alleviate the overload, neighboring MGs can be provisionally coupled to provide mutual support to each other which is a more effective, economic and reliable approach. Such a coupling is preferred to be via power electronic converters to enhance the autonomy of the MGs. This paper proposes a two-stage, coordinated power sharing strategy among BESs and coupled MGs for overload management in autonomous MGs, through dynamic frequency control. Both local BES and the neighboring MGs can work in conjunction or individually to supply the required overload power demand. For this, BES' state of charge should be above a minimum level and extra power generation capacity needs to be available in the neighboring MGs. A predefined framework with appropriate constraints and conditions, under which the power exchange will take place, are defined and formulated. The proposed mechanism is a decentralized approach, operating based on local frequency and state of charge measurements, and without any data communication amongst the MGs. The dynamic performance of such a network, is evaluated through extensive simulation studies in PSIMR and verifies that the proposed strategy can successfully alleviate the overloading situation in the MGs through proper frequency regulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3004185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3004185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, PolandPublisher:Elsevier BV Madurai Elavarasan, R.; Pugazhendhi, R.; Jamal, T.; Dyduch, J.; Arif, M.T.; Manoj Kumar, N.; Shafiullah, GM.; Chopra, S.S.; Nadarajah, M.;The United Nations (UN) have formulated seventeen Sustainable Development Goals (SDGs) and thus, humans were trying to traverse the sustainable path. Meanwhile, the COVID-19 pandemic has emerged and forced out the ephemeral conventional approaches. Thus, the post-COVID world indicates the need for sustainable development and strategies in par with the ecosystem. The authors propose this study as a guide to direct the post-pandemic scenario into the sustainable pathway by prioritizing energy sustainability to engage the actions for achieving the SDGs. The analysis in this study commences with the investigation of pronounced impacts in the energy sector with its influence on the progress towards sustainability. To pursue the path of energy sustainability, a qualitative analysis is performed in a parallel approach from the key viewpoint of the renewable and sustainable energy transition, digital transformation of the energy sector and energy affordability in the post-COVID world. A SWOT-AHP hybrid methodology is employed to identify the significance of each strategy or issues to be focused on immediately in the post-COVID world. The study also discusses energy sustainability from political bodies and policy makers’ perspective, and the actual scenario where we are headed is revealed with the aid of process-tracing method. Furthermore, a novel quantitative analysis is established to represent the SDG’s interaction and the result shows that the SDG 7 is the underpinning goal in relative to other SDGs. In context with it, the mapping of energy sustainability to the sustainable world is accomplished. The ultimate inference from envisioning the SDGs through energy sustainability shows that a sustainable world would result after the pandemic. However, the changes in the energy market, investment preferences and more importantly, the decisions influenced by the political bodies in the post-COVID-world is decisive in achieving the same in a stipulated time frame.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 145 citations 145 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, PolandPublisher:Elsevier BV Madurai Elavarasan, R.; Pugazhendhi, R.; Jamal, T.; Dyduch, J.; Arif, M.T.; Manoj Kumar, N.; Shafiullah, GM.; Chopra, S.S.; Nadarajah, M.;The United Nations (UN) have formulated seventeen Sustainable Development Goals (SDGs) and thus, humans were trying to traverse the sustainable path. Meanwhile, the COVID-19 pandemic has emerged and forced out the ephemeral conventional approaches. Thus, the post-COVID world indicates the need for sustainable development and strategies in par with the ecosystem. The authors propose this study as a guide to direct the post-pandemic scenario into the sustainable pathway by prioritizing energy sustainability to engage the actions for achieving the SDGs. The analysis in this study commences with the investigation of pronounced impacts in the energy sector with its influence on the progress towards sustainability. To pursue the path of energy sustainability, a qualitative analysis is performed in a parallel approach from the key viewpoint of the renewable and sustainable energy transition, digital transformation of the energy sector and energy affordability in the post-COVID world. A SWOT-AHP hybrid methodology is employed to identify the significance of each strategy or issues to be focused on immediately in the post-COVID world. The study also discusses energy sustainability from political bodies and policy makers’ perspective, and the actual scenario where we are headed is revealed with the aid of process-tracing method. Furthermore, a novel quantitative analysis is established to represent the SDG’s interaction and the result shows that the SDG 7 is the underpinning goal in relative to other SDGs. In context with it, the mapping of energy sustainability to the sustainable world is accomplished. The ultimate inference from envisioning the SDGs through energy sustainability shows that a sustainable world would result after the pandemic. However, the changes in the energy market, investment preferences and more importantly, the decisions influenced by the political bodies in the post-COVID-world is decisive in achieving the same in a stipulated time frame.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 145 citations 145 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Australia, GermanyPublisher:Elsevier BV Taskin Jamal; Craig Carter; Thomas Schmidt; G.M. Shafiullah; Martina Calais; Tania Urmee;Abstract One of the primary technical challenges of integrating high levels of PV generation into standalone off-grid power supply systems is their variable power output characteristics. In dealing with this issue, the integration of reliable PV forecasting techniques and preferably energy storage, are highly effective. Applying a short-term PV forecasting method, together with a compensatory controllable resource, can help in the management of system operation. This study incorporates the development of an energy flow modelling tool that has been used to analyse the benefits of 1-min ahead PV forecasting and battery storage for different system configurations. Based on the five days of 1-min ahead forecasting results analysed, it is found that PV forecasting enables the prosumer to install more than double the PV capacity, compared to the allowed installed PV capacity when no forecasting is employed. This additional PV capacity saves around 24–25% (on average) of diesel fuel per day for the diesel-PV-battery configuration. The outcomes evidently indicate that incorporating 1-min ahead PV forecasting enables a significant increase of PV hosting capacity of the system, without compromising the reliability of the system.
Applied Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Australia, GermanyPublisher:Elsevier BV Taskin Jamal; Craig Carter; Thomas Schmidt; G.M. Shafiullah; Martina Calais; Tania Urmee;Abstract One of the primary technical challenges of integrating high levels of PV generation into standalone off-grid power supply systems is their variable power output characteristics. In dealing with this issue, the integration of reliable PV forecasting techniques and preferably energy storage, are highly effective. Applying a short-term PV forecasting method, together with a compensatory controllable resource, can help in the management of system operation. This study incorporates the development of an energy flow modelling tool that has been used to analyse the benefits of 1-min ahead PV forecasting and battery storage for different system configurations. Based on the five days of 1-min ahead forecasting results analysed, it is found that PV forecasting enables the prosumer to install more than double the PV capacity, compared to the allowed installed PV capacity when no forecasting is employed. This additional PV capacity saves around 24–25% (on average) of diesel fuel per day for the diesel-PV-battery configuration. The outcomes evidently indicate that incorporating 1-min ahead PV forecasting enables a significant increase of PV hosting capacity of the system, without compromising the reliability of the system.
Applied Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Authors: Siddik Shakul Hameed; Ramesh Ramadoss; Kannadasan Raju; GM Shafiullah;doi: 10.3390/su14074235
Wind energy is one of the most promising alternates of fossil fuels because of its abundant availability, low cost, and pollution-free attributes. Wind potential estimation, wind forecasting, and effective wind-energy management are the critical factors in planning and managing wind farms connected to wind-pooling substations. Hence, this study proposes a hybrid framework-based approach for wind-resource estimation and forecasting, namely IGWO-SVR (improved grey wolf optimization method (IGWO)-support vector regression (SVR)) for a real-time power pooling substation. The wind resource assessment and behavioral wind analysis has been carried out with the proposed IGWO-SVR optimization method for hourly, daily, monthly, and annual cases using 40 years of ERA (European Center for Medium-Range Weather Forecast reanalysis) data along with the impact of the El Niño effect. First, wind reassessment is carried out considering the impact of El Niño, wind speed, power, pressure, and temperature of the selected site Radhapuram substation in Tamilnadu, India and reported extensively. In addition, statistical analysis and wind distribution fitting are performed to demonstrate the seasonal effect. Then the proposed model is adopted for wind speed forecasting based on the dataset. From the results, the proposed model offered the best assessment report and predicted the wind behavior with greater accuracy using evaluation metrics, namely root mean square error (RMSE), mean absolute error (MAE), and mean squared error (MSE). For short-term wind speed, power, and El Niño forecasting, IGWO-SVR optimization effectively outperforms other existing models. This method can be adapted effectively in any potential locations for wind resource assessment and forecasting needs for better renewable energy management by power utilities.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4235/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4235/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Authors: Siddik Shakul Hameed; Ramesh Ramadoss; Kannadasan Raju; GM Shafiullah;doi: 10.3390/su14074235
Wind energy is one of the most promising alternates of fossil fuels because of its abundant availability, low cost, and pollution-free attributes. Wind potential estimation, wind forecasting, and effective wind-energy management are the critical factors in planning and managing wind farms connected to wind-pooling substations. Hence, this study proposes a hybrid framework-based approach for wind-resource estimation and forecasting, namely IGWO-SVR (improved grey wolf optimization method (IGWO)-support vector regression (SVR)) for a real-time power pooling substation. The wind resource assessment and behavioral wind analysis has been carried out with the proposed IGWO-SVR optimization method for hourly, daily, monthly, and annual cases using 40 years of ERA (European Center for Medium-Range Weather Forecast reanalysis) data along with the impact of the El Niño effect. First, wind reassessment is carried out considering the impact of El Niño, wind speed, power, pressure, and temperature of the selected site Radhapuram substation in Tamilnadu, India and reported extensively. In addition, statistical analysis and wind distribution fitting are performed to demonstrate the seasonal effect. Then the proposed model is adopted for wind speed forecasting based on the dataset. From the results, the proposed model offered the best assessment report and predicted the wind behavior with greater accuracy using evaluation metrics, namely root mean square error (RMSE), mean absolute error (MAE), and mean squared error (MSE). For short-term wind speed, power, and El Niño forecasting, IGWO-SVR optimization effectively outperforms other existing models. This method can be adapted effectively in any potential locations for wind resource assessment and forecasting needs for better renewable energy management by power utilities.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4235/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4235/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 AustraliaPublisher:MDPI AG Authors: Md Asaduzzaman Shoeb; GM. Shafiullah;doi: 10.3390/en11051283
Due to high investment and maintenance costs, the government on Bangladesh is unable to provide sufficient support for grid extension and supplying electricity to remote or rural areas. The deficit in electricity introduces a crisis in powering irrigation systems, which influences negatively the country’s dominant income-generating sector, agriculture. Islanded microgrids with solar photovoltaic (PV) cells is one of the most attractive solutions for providing power to rural areas due to their cost-effectiveness, reliability and environment-friendly attributes. Therefore, a techno-economic feasibility study has been undertaken to investigate the prospects of renewable energy-based islanded microgrids to support rural electrification to power both households and irrigation systems. Three case studies based on the operation time of irrigation pumps during the day are developed using the HOMER Pro Microgrid Analysis Tool to identify the optimised configurations for the proposed system. The optimised configurations are then assessed considering the performance matrices of the cost of electricity (COE), net present cost (NPC), greenhouse gas (GHG) emissions and renewable energy fraction (RF). From the analyses, it is perceived that the operation of irrigation pumps at different times of a day is a significant influence, and the optimum method considering techno-economical evaluation is to run the irrigation pumps during the daytime by solar PV. It is evident that the proposed islanded microgrid has significant potentialities in powering irrigation systems as well as rural electrification with low energy generation costs, a contribution to the reduction of global warming and to ameliorating the energy crisis in Bangladesh in order to achieve a sustainable future.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1283/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1283/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 AustraliaPublisher:MDPI AG Authors: Md Asaduzzaman Shoeb; GM. Shafiullah;doi: 10.3390/en11051283
Due to high investment and maintenance costs, the government on Bangladesh is unable to provide sufficient support for grid extension and supplying electricity to remote or rural areas. The deficit in electricity introduces a crisis in powering irrigation systems, which influences negatively the country’s dominant income-generating sector, agriculture. Islanded microgrids with solar photovoltaic (PV) cells is one of the most attractive solutions for providing power to rural areas due to their cost-effectiveness, reliability and environment-friendly attributes. Therefore, a techno-economic feasibility study has been undertaken to investigate the prospects of renewable energy-based islanded microgrids to support rural electrification to power both households and irrigation systems. Three case studies based on the operation time of irrigation pumps during the day are developed using the HOMER Pro Microgrid Analysis Tool to identify the optimised configurations for the proposed system. The optimised configurations are then assessed considering the performance matrices of the cost of electricity (COE), net present cost (NPC), greenhouse gas (GHG) emissions and renewable energy fraction (RF). From the analyses, it is perceived that the operation of irrigation pumps at different times of a day is a significant influence, and the optimum method considering techno-economical evaluation is to run the irrigation pumps during the daytime by solar PV. It is evident that the proposed islanded microgrid has significant potentialities in powering irrigation systems as well as rural electrification with low energy generation costs, a contribution to the reduction of global warming and to ameliorating the energy crisis in Bangladesh in order to achieve a sustainable future.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1283/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1283/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Ferdous, S.M.; Shahnia, F.; Shafiullah, GM.;A standalone microgrid (MG) may frequently experience overloading owing to insufficient power generation or excessive renewable-based generation, which can cause unacceptable voltage and frequency deviations. Such problems are conventionally alleviated by load-shedding or renewable curtailment. Alternatively, autonomously operating MGs can be provisionally connected to facilitate temporary power exchange. The power-exchange link among the MGs can be of different types, e.g., three-phase ac, single-phase ac, or dc-link and power electronic converter-interfaced. All these topologies can facilitate power exchange, but they differ with regard to stability and robustness. In the present study, the stability and robustness of such structures are investigated, and the effects of factors such as the length of the interconnecting line among the MGs, the amount of power supplied to the troubled MGs, and the number of coupled MGs are compared. The stability and robustness of the structures are evaluated in Matlab.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/cjee.2021.000038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/cjee.2021.000038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Ferdous, S.M.; Shahnia, F.; Shafiullah, GM.;A standalone microgrid (MG) may frequently experience overloading owing to insufficient power generation or excessive renewable-based generation, which can cause unacceptable voltage and frequency deviations. Such problems are conventionally alleviated by load-shedding or renewable curtailment. Alternatively, autonomously operating MGs can be provisionally connected to facilitate temporary power exchange. The power-exchange link among the MGs can be of different types, e.g., three-phase ac, single-phase ac, or dc-link and power electronic converter-interfaced. All these topologies can facilitate power exchange, but they differ with regard to stability and robustness. In the present study, the stability and robustness of such structures are investigated, and the effects of factors such as the length of the interconnecting line among the MGs, the amount of power supplied to the troubled MGs, and the number of coupled MGs are compared. The stability and robustness of the structures are evaluated in Matlab.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/cjee.2021.000038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/cjee.2021.000038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 AustraliaPublisher:MDPI AG Authors: Izaz Zunnurain; Md. Maruf; Md. Rahman; GM Shafiullah;To facilitate the possible technology and demand changes in a renewable-energy dominated future energy system, an integrated approach that involves Renewable Energy Sources (RES)-based generation, cutting-edge communication strategies, and advanced Demand Side Management (DSM) is essential. A Home Energy Management System (HEMS) with integrated Demand Response (DR) programs is able to perform optimal coordination and scheduling of various smart appliances. This paper develops an advanced DSM framework for microgrids, which encompasses modeling of a microgrid, inclusion of a smart HEMS comprising of smart load monitoring and an intelligent load controller, and finally, incorporation of a DR strategy to reduce peak demand and energy costs. Effectiveness of the proposed framework is assessed through a case study analysis, by investigation of DR opportunities and identification of energy savings for the developed model on a typical summer day in Western Australia. From the case study analysis, it is evident that a maximum amount of 2.95 kWh energy can be shifted to low demand periods, which provides a total daily energy savings of 3%. The total energy cost per day is AU$2.50 and AU$3.49 for a house with and without HEMS, respectively. Finally, maximum possible peak shaving, maximum shiftable energy, and maximum standby power losses and energy cost savings with or without HEMS have been calculated to identify the energy saving opportunities of the proposed strategy for a microgrid of 100 houses with solar, wind, and a back-up diesel generator in the generation side.
Infrastructures arrow_drop_down InfrastructuresOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2412-3811/3/4/50/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/infrastructures3040050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Infrastructures arrow_drop_down InfrastructuresOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2412-3811/3/4/50/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/infrastructures3040050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 AustraliaPublisher:MDPI AG Authors: Izaz Zunnurain; Md. Maruf; Md. Rahman; GM Shafiullah;To facilitate the possible technology and demand changes in a renewable-energy dominated future energy system, an integrated approach that involves Renewable Energy Sources (RES)-based generation, cutting-edge communication strategies, and advanced Demand Side Management (DSM) is essential. A Home Energy Management System (HEMS) with integrated Demand Response (DR) programs is able to perform optimal coordination and scheduling of various smart appliances. This paper develops an advanced DSM framework for microgrids, which encompasses modeling of a microgrid, inclusion of a smart HEMS comprising of smart load monitoring and an intelligent load controller, and finally, incorporation of a DR strategy to reduce peak demand and energy costs. Effectiveness of the proposed framework is assessed through a case study analysis, by investigation of DR opportunities and identification of energy savings for the developed model on a typical summer day in Western Australia. From the case study analysis, it is evident that a maximum amount of 2.95 kWh energy can be shifted to low demand periods, which provides a total daily energy savings of 3%. The total energy cost per day is AU$2.50 and AU$3.49 for a house with and without HEMS, respectively. Finally, maximum possible peak shaving, maximum shiftable energy, and maximum standby power losses and energy cost savings with or without HEMS have been calculated to identify the energy saving opportunities of the proposed strategy for a microgrid of 100 houses with solar, wind, and a back-up diesel generator in the generation side.
Infrastructures arrow_drop_down InfrastructuresOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2412-3811/3/4/50/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/infrastructures3040050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Infrastructures arrow_drop_down InfrastructuresOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2412-3811/3/4/50/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/infrastructures3040050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Authors: Shafiullah, GM.; Arif, M.T.; Oo, A.M.T.;A recent issue of increasing public focus is the need for robust, sustainable and climate friendly power systems that are intelligent, reliable and green. The intermittent nature of renewable energy generation and the associated power electronic inverters creates a number of potential challenges in integrating large-scale renewable energy (RE) into the grid that affects power quality of the distribution network. Therefore, this study initially, investigates the potential technical impacts in particular voltage regulation, active and reactive power variations, transformer loading and current and voltage harmonics causes with RE integration. Then, to reduce the level of impacts observed, STATCOM and energy storage system (both optimised) were integrated into the network that ensures a smooth power supply to the customers. As a case study, the Berserker Street Feeder, Frenchville Substation under Rockhampton distribution network, Central Queensland, Australia has been considered. Similar analyses also carried out with the IEEE 13 bus network to investigate the potential technical challenges of RE integration and identify suitable mitigation measures. Results shows that integration of both optimised STATCOM and energy storage enhances the overall power quality of the power network as it improves voltage regulation, power distribution, and transformer utilisation and reduce total harmonic distortion of the power network.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Authors: Shafiullah, GM.; Arif, M.T.; Oo, A.M.T.;A recent issue of increasing public focus is the need for robust, sustainable and climate friendly power systems that are intelligent, reliable and green. The intermittent nature of renewable energy generation and the associated power electronic inverters creates a number of potential challenges in integrating large-scale renewable energy (RE) into the grid that affects power quality of the distribution network. Therefore, this study initially, investigates the potential technical impacts in particular voltage regulation, active and reactive power variations, transformer loading and current and voltage harmonics causes with RE integration. Then, to reduce the level of impacts observed, STATCOM and energy storage system (both optimised) were integrated into the network that ensures a smooth power supply to the customers. As a case study, the Berserker Street Feeder, Frenchville Substation under Rockhampton distribution network, Central Queensland, Australia has been considered. Similar analyses also carried out with the IEEE 13 bus network to investigate the potential technical challenges of RE integration and identify suitable mitigation measures. Results shows that integration of both optimised STATCOM and energy storage enhances the overall power quality of the power network as it improves voltage regulation, power distribution, and transformer utilisation and reduce total harmonic distortion of the power network.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Wayan G. Santika; M. Anisuzzaman; Parisa A. Bahri; G.M. Shafiullah; Gloria V. Rupf; Tania Urmee;Abstract Energy is a key enabler in achieving the Sustainable Development Goals (SDGs) as energy plays the pivotal role in ending poverty and hunger, providing healthcare, education, and water, as well as sustaining economic growth and protecting the environment. Consequently, since the SDGs are executable only at local and national levels, mainstreaming the SDGs into local/national development planning will put pressure on the country’s energy sector. Considering the broad scope of the SDGs, countries will prioritize different SDG targets based on their urgencies, resources, and capabilities. However, energy linkages with the SDGs and their targets are complex, with direct and indirect connections, synergies, and trade-offs. More importantly, there is a lack of capacity among policymakers to be able to develop an SDGs-responsive energy plan, as there is no guidance on how the impact of linkages can be translated into local/national energy planning. This study aims to examine the complexity of the interconnections between energy and the SDGs, as well as give examples of how these linkages can be quantified. Twenty-five SDG targets with direct links to energy are identified in this study, and a map of the multidimensional interaction between them are presented. The study also provides examples of quantification of the targets/indicators into their energy requirements. The results of the study will help energy planners and policymakers forecast energy demand more accurately for energy planning and policies under the SDGs regime.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2018.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu148 citations 148 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2018.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Wayan G. Santika; M. Anisuzzaman; Parisa A. Bahri; G.M. Shafiullah; Gloria V. Rupf; Tania Urmee;Abstract Energy is a key enabler in achieving the Sustainable Development Goals (SDGs) as energy plays the pivotal role in ending poverty and hunger, providing healthcare, education, and water, as well as sustaining economic growth and protecting the environment. Consequently, since the SDGs are executable only at local and national levels, mainstreaming the SDGs into local/national development planning will put pressure on the country’s energy sector. Considering the broad scope of the SDGs, countries will prioritize different SDG targets based on their urgencies, resources, and capabilities. However, energy linkages with the SDGs and their targets are complex, with direct and indirect connections, synergies, and trade-offs. More importantly, there is a lack of capacity among policymakers to be able to develop an SDGs-responsive energy plan, as there is no guidance on how the impact of linkages can be translated into local/national energy planning. This study aims to examine the complexity of the interconnections between energy and the SDGs, as well as give examples of how these linkages can be quantified. Twenty-five SDG targets with direct links to energy are identified in this study, and a map of the multidimensional interaction between them are presented. The study also provides examples of quantification of the targets/indicators into their energy requirements. The results of the study will help energy planners and policymakers forecast energy demand more accurately for energy planning and policies under the SDGs regime.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2018.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu148 citations 148 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2018.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Jamal, T.; Urmee, T.; Calais, M.; Shafiullah, GM; Carter, C.;Abstract Gradual technical advancement and rapidly decreasing costs have led to widespread deployment of solar photovoltaic (PV) systems. In Australia, distributed PV systems make up the vast majority of installed PV capacity. In remote communities, distributed PV systems offer a supplementary solution to existing diesel-based electricity generation. However, remote electricity networks, being different from urban networks primarily due to their limited generation capacity and spinning reserve are likely to be critically affected by the variability characteristics of PV generation. The integration of distributed PV systems into conventional remote electricity networks has noteworthy impacts on their technical and non-technical operations that pose new challenges for PV deployment. Significant technical issues are observed in these networks as PV penetration levels increase, such as reduced power quality, inadequate diesel generator dispatch for spinning reserve, increased complexities in network operation and management, unintended islanding and even system blackouts. Utility adopted operational and control strategies significantly influence PV penetration levels in different remote networks around the world, including Australia. This paper reviews the current electrification scenarios in remote Australian networks and focuses on the impacts and technical challenges of distributed PV deployment and the control strategies adopted by remote area power utilities. Some suggestions and recommendations, such as the development of robust control mechanisms incorporating PV forecasting technology, modern network equipment, real-time measurements and network ancillary services provided by inverter coupled generation systems to enhance networks' operational stability and reliability are also presented. This review is of benefit to scientific researchers, investors and different stakeholders, who wish to have a better understanding of distributed PV systems' deployment scenarios into remote electricity networks. As the inherent characteristics of Australian remote electricity networks are similar to those in African and Asian rural electricity networks; the findings, reviews and recommendations presented are also relevant to those networks.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Jamal, T.; Urmee, T.; Calais, M.; Shafiullah, GM; Carter, C.;Abstract Gradual technical advancement and rapidly decreasing costs have led to widespread deployment of solar photovoltaic (PV) systems. In Australia, distributed PV systems make up the vast majority of installed PV capacity. In remote communities, distributed PV systems offer a supplementary solution to existing diesel-based electricity generation. However, remote electricity networks, being different from urban networks primarily due to their limited generation capacity and spinning reserve are likely to be critically affected by the variability characteristics of PV generation. The integration of distributed PV systems into conventional remote electricity networks has noteworthy impacts on their technical and non-technical operations that pose new challenges for PV deployment. Significant technical issues are observed in these networks as PV penetration levels increase, such as reduced power quality, inadequate diesel generator dispatch for spinning reserve, increased complexities in network operation and management, unintended islanding and even system blackouts. Utility adopted operational and control strategies significantly influence PV penetration levels in different remote networks around the world, including Australia. This paper reviews the current electrification scenarios in remote Australian networks and focuses on the impacts and technical challenges of distributed PV deployment and the control strategies adopted by remote area power utilities. Some suggestions and recommendations, such as the development of robust control mechanisms incorporating PV forecasting technology, modern network equipment, real-time measurements and network ancillary services provided by inverter coupled generation systems to enhance networks' operational stability and reliability are also presented. This review is of benefit to scientific researchers, investors and different stakeholders, who wish to have a better understanding of distributed PV systems' deployment scenarios into remote electricity networks. As the inherent characteristics of Australian remote electricity networks are similar to those in African and Asian rural electricity networks; the findings, reviews and recommendations presented are also relevant to those networks.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) S. M. Ferdous; G. M. Shafiullah; Farhad Shahnia; Rajvikram Madurai Elavarasan; Umashankar Subramaniam;Autonomous microgrids (MGs) are being installed in large remote areas to supply power where access to the utility grid is unavailable or infeasible. The power generation of such standalone MGs is largely dominated by renewable based energy sources where overloading or power deficiencies can be common due to the high intermittency and uncertainty in both load and power generation. Load-shedding is the most common mechanism to alleviate these problems to prevent system instability. To minimize load-shedding, most MGs are equipped with local battery energy storage (BES) systems to provide additional support. Furthermore, in the event of severe overloading or when BES capacity is insufficient to alleviate the overload, neighboring MGs can be provisionally coupled to provide mutual support to each other which is a more effective, economic and reliable approach. Such a coupling is preferred to be via power electronic converters to enhance the autonomy of the MGs. This paper proposes a two-stage, coordinated power sharing strategy among BESs and coupled MGs for overload management in autonomous MGs, through dynamic frequency control. Both local BES and the neighboring MGs can work in conjunction or individually to supply the required overload power demand. For this, BES' state of charge should be above a minimum level and extra power generation capacity needs to be available in the neighboring MGs. A predefined framework with appropriate constraints and conditions, under which the power exchange will take place, are defined and formulated. The proposed mechanism is a decentralized approach, operating based on local frequency and state of charge measurements, and without any data communication amongst the MGs. The dynamic performance of such a network, is evaluated through extensive simulation studies in PSIMR and verifies that the proposed strategy can successfully alleviate the overloading situation in the MGs through proper frequency regulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3004185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3004185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) S. M. Ferdous; G. M. Shafiullah; Farhad Shahnia; Rajvikram Madurai Elavarasan; Umashankar Subramaniam;Autonomous microgrids (MGs) are being installed in large remote areas to supply power where access to the utility grid is unavailable or infeasible. The power generation of such standalone MGs is largely dominated by renewable based energy sources where overloading or power deficiencies can be common due to the high intermittency and uncertainty in both load and power generation. Load-shedding is the most common mechanism to alleviate these problems to prevent system instability. To minimize load-shedding, most MGs are equipped with local battery energy storage (BES) systems to provide additional support. Furthermore, in the event of severe overloading or when BES capacity is insufficient to alleviate the overload, neighboring MGs can be provisionally coupled to provide mutual support to each other which is a more effective, economic and reliable approach. Such a coupling is preferred to be via power electronic converters to enhance the autonomy of the MGs. This paper proposes a two-stage, coordinated power sharing strategy among BESs and coupled MGs for overload management in autonomous MGs, through dynamic frequency control. Both local BES and the neighboring MGs can work in conjunction or individually to supply the required overload power demand. For this, BES' state of charge should be above a minimum level and extra power generation capacity needs to be available in the neighboring MGs. A predefined framework with appropriate constraints and conditions, under which the power exchange will take place, are defined and formulated. The proposed mechanism is a decentralized approach, operating based on local frequency and state of charge measurements, and without any data communication amongst the MGs. The dynamic performance of such a network, is evaluated through extensive simulation studies in PSIMR and verifies that the proposed strategy can successfully alleviate the overloading situation in the MGs through proper frequency regulation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3004185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3004185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, PolandPublisher:Elsevier BV Madurai Elavarasan, R.; Pugazhendhi, R.; Jamal, T.; Dyduch, J.; Arif, M.T.; Manoj Kumar, N.; Shafiullah, GM.; Chopra, S.S.; Nadarajah, M.;The United Nations (UN) have formulated seventeen Sustainable Development Goals (SDGs) and thus, humans were trying to traverse the sustainable path. Meanwhile, the COVID-19 pandemic has emerged and forced out the ephemeral conventional approaches. Thus, the post-COVID world indicates the need for sustainable development and strategies in par with the ecosystem. The authors propose this study as a guide to direct the post-pandemic scenario into the sustainable pathway by prioritizing energy sustainability to engage the actions for achieving the SDGs. The analysis in this study commences with the investigation of pronounced impacts in the energy sector with its influence on the progress towards sustainability. To pursue the path of energy sustainability, a qualitative analysis is performed in a parallel approach from the key viewpoint of the renewable and sustainable energy transition, digital transformation of the energy sector and energy affordability in the post-COVID world. A SWOT-AHP hybrid methodology is employed to identify the significance of each strategy or issues to be focused on immediately in the post-COVID world. The study also discusses energy sustainability from political bodies and policy makers’ perspective, and the actual scenario where we are headed is revealed with the aid of process-tracing method. Furthermore, a novel quantitative analysis is established to represent the SDG’s interaction and the result shows that the SDG 7 is the underpinning goal in relative to other SDGs. In context with it, the mapping of energy sustainability to the sustainable world is accomplished. The ultimate inference from envisioning the SDGs through energy sustainability shows that a sustainable world would result after the pandemic. However, the changes in the energy market, investment preferences and more importantly, the decisions influenced by the political bodies in the post-COVID-world is decisive in achieving the same in a stipulated time frame.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 145 citations 145 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, PolandPublisher:Elsevier BV Madurai Elavarasan, R.; Pugazhendhi, R.; Jamal, T.; Dyduch, J.; Arif, M.T.; Manoj Kumar, N.; Shafiullah, GM.; Chopra, S.S.; Nadarajah, M.;The United Nations (UN) have formulated seventeen Sustainable Development Goals (SDGs) and thus, humans were trying to traverse the sustainable path. Meanwhile, the COVID-19 pandemic has emerged and forced out the ephemeral conventional approaches. Thus, the post-COVID world indicates the need for sustainable development and strategies in par with the ecosystem. The authors propose this study as a guide to direct the post-pandemic scenario into the sustainable pathway by prioritizing energy sustainability to engage the actions for achieving the SDGs. The analysis in this study commences with the investigation of pronounced impacts in the energy sector with its influence on the progress towards sustainability. To pursue the path of energy sustainability, a qualitative analysis is performed in a parallel approach from the key viewpoint of the renewable and sustainable energy transition, digital transformation of the energy sector and energy affordability in the post-COVID world. A SWOT-AHP hybrid methodology is employed to identify the significance of each strategy or issues to be focused on immediately in the post-COVID world. The study also discusses energy sustainability from political bodies and policy makers’ perspective, and the actual scenario where we are headed is revealed with the aid of process-tracing method. Furthermore, a novel quantitative analysis is established to represent the SDG’s interaction and the result shows that the SDG 7 is the underpinning goal in relative to other SDGs. In context with it, the mapping of energy sustainability to the sustainable world is accomplished. The ultimate inference from envisioning the SDGs through energy sustainability shows that a sustainable world would result after the pandemic. However, the changes in the energy market, investment preferences and more importantly, the decisions influenced by the political bodies in the post-COVID-world is decisive in achieving the same in a stipulated time frame.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 145 citations 145 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Australia, GermanyPublisher:Elsevier BV Taskin Jamal; Craig Carter; Thomas Schmidt; G.M. Shafiullah; Martina Calais; Tania Urmee;Abstract One of the primary technical challenges of integrating high levels of PV generation into standalone off-grid power supply systems is their variable power output characteristics. In dealing with this issue, the integration of reliable PV forecasting techniques and preferably energy storage, are highly effective. Applying a short-term PV forecasting method, together with a compensatory controllable resource, can help in the management of system operation. This study incorporates the development of an energy flow modelling tool that has been used to analyse the benefits of 1-min ahead PV forecasting and battery storage for different system configurations. Based on the five days of 1-min ahead forecasting results analysed, it is found that PV forecasting enables the prosumer to install more than double the PV capacity, compared to the allowed installed PV capacity when no forecasting is employed. This additional PV capacity saves around 24–25% (on average) of diesel fuel per day for the diesel-PV-battery configuration. The outcomes evidently indicate that incorporating 1-min ahead PV forecasting enables a significant increase of PV hosting capacity of the system, without compromising the reliability of the system.
Applied Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Australia, GermanyPublisher:Elsevier BV Taskin Jamal; Craig Carter; Thomas Schmidt; G.M. Shafiullah; Martina Calais; Tania Urmee;Abstract One of the primary technical challenges of integrating high levels of PV generation into standalone off-grid power supply systems is their variable power output characteristics. In dealing with this issue, the integration of reliable PV forecasting techniques and preferably energy storage, are highly effective. Applying a short-term PV forecasting method, together with a compensatory controllable resource, can help in the management of system operation. This study incorporates the development of an energy flow modelling tool that has been used to analyse the benefits of 1-min ahead PV forecasting and battery storage for different system configurations. Based on the five days of 1-min ahead forecasting results analysed, it is found that PV forecasting enables the prosumer to install more than double the PV capacity, compared to the allowed installed PV capacity when no forecasting is employed. This additional PV capacity saves around 24–25% (on average) of diesel fuel per day for the diesel-PV-battery configuration. The outcomes evidently indicate that incorporating 1-min ahead PV forecasting enables a significant increase of PV hosting capacity of the system, without compromising the reliability of the system.
Applied Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Authors: Siddik Shakul Hameed; Ramesh Ramadoss; Kannadasan Raju; GM Shafiullah;doi: 10.3390/su14074235
Wind energy is one of the most promising alternates of fossil fuels because of its abundant availability, low cost, and pollution-free attributes. Wind potential estimation, wind forecasting, and effective wind-energy management are the critical factors in planning and managing wind farms connected to wind-pooling substations. Hence, this study proposes a hybrid framework-based approach for wind-resource estimation and forecasting, namely IGWO-SVR (improved grey wolf optimization method (IGWO)-support vector regression (SVR)) for a real-time power pooling substation. The wind resource assessment and behavioral wind analysis has been carried out with the proposed IGWO-SVR optimization method for hourly, daily, monthly, and annual cases using 40 years of ERA (European Center for Medium-Range Weather Forecast reanalysis) data along with the impact of the El Niño effect. First, wind reassessment is carried out considering the impact of El Niño, wind speed, power, pressure, and temperature of the selected site Radhapuram substation in Tamilnadu, India and reported extensively. In addition, statistical analysis and wind distribution fitting are performed to demonstrate the seasonal effect. Then the proposed model is adopted for wind speed forecasting based on the dataset. From the results, the proposed model offered the best assessment report and predicted the wind behavior with greater accuracy using evaluation metrics, namely root mean square error (RMSE), mean absolute error (MAE), and mean squared error (MSE). For short-term wind speed, power, and El Niño forecasting, IGWO-SVR optimization effectively outperforms other existing models. This method can be adapted effectively in any potential locations for wind resource assessment and forecasting needs for better renewable energy management by power utilities.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4235/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4235/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Authors: Siddik Shakul Hameed; Ramesh Ramadoss; Kannadasan Raju; GM Shafiullah;doi: 10.3390/su14074235
Wind energy is one of the most promising alternates of fossil fuels because of its abundant availability, low cost, and pollution-free attributes. Wind potential estimation, wind forecasting, and effective wind-energy management are the critical factors in planning and managing wind farms connected to wind-pooling substations. Hence, this study proposes a hybrid framework-based approach for wind-resource estimation and forecasting, namely IGWO-SVR (improved grey wolf optimization method (IGWO)-support vector regression (SVR)) for a real-time power pooling substation. The wind resource assessment and behavioral wind analysis has been carried out with the proposed IGWO-SVR optimization method for hourly, daily, monthly, and annual cases using 40 years of ERA (European Center for Medium-Range Weather Forecast reanalysis) data along with the impact of the El Niño effect. First, wind reassessment is carried out considering the impact of El Niño, wind speed, power, pressure, and temperature of the selected site Radhapuram substation in Tamilnadu, India and reported extensively. In addition, statistical analysis and wind distribution fitting are performed to demonstrate the seasonal effect. Then the proposed model is adopted for wind speed forecasting based on the dataset. From the results, the proposed model offered the best assessment report and predicted the wind behavior with greater accuracy using evaluation metrics, namely root mean square error (RMSE), mean absolute error (MAE), and mean squared error (MSE). For short-term wind speed, power, and El Niño forecasting, IGWO-SVR optimization effectively outperforms other existing models. This method can be adapted effectively in any potential locations for wind resource assessment and forecasting needs for better renewable energy management by power utilities.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4235/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/7/4235/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14074235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 AustraliaPublisher:MDPI AG Authors: Md Asaduzzaman Shoeb; GM. Shafiullah;doi: 10.3390/en11051283
Due to high investment and maintenance costs, the government on Bangladesh is unable to provide sufficient support for grid extension and supplying electricity to remote or rural areas. The deficit in electricity introduces a crisis in powering irrigation systems, which influences negatively the country’s dominant income-generating sector, agriculture. Islanded microgrids with solar photovoltaic (PV) cells is one of the most attractive solutions for providing power to rural areas due to their cost-effectiveness, reliability and environment-friendly attributes. Therefore, a techno-economic feasibility study has been undertaken to investigate the prospects of renewable energy-based islanded microgrids to support rural electrification to power both households and irrigation systems. Three case studies based on the operation time of irrigation pumps during the day are developed using the HOMER Pro Microgrid Analysis Tool to identify the optimised configurations for the proposed system. The optimised configurations are then assessed considering the performance matrices of the cost of electricity (COE), net present cost (NPC), greenhouse gas (GHG) emissions and renewable energy fraction (RF). From the analyses, it is perceived that the operation of irrigation pumps at different times of a day is a significant influence, and the optimum method considering techno-economical evaluation is to run the irrigation pumps during the daytime by solar PV. It is evident that the proposed islanded microgrid has significant potentialities in powering irrigation systems as well as rural electrification with low energy generation costs, a contribution to the reduction of global warming and to ameliorating the energy crisis in Bangladesh in order to achieve a sustainable future.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1283/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1283/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 AustraliaPublisher:MDPI AG Authors: Md Asaduzzaman Shoeb; GM. Shafiullah;doi: 10.3390/en11051283
Due to high investment and maintenance costs, the government on Bangladesh is unable to provide sufficient support for grid extension and supplying electricity to remote or rural areas. The deficit in electricity introduces a crisis in powering irrigation systems, which influences negatively the country’s dominant income-generating sector, agriculture. Islanded microgrids with solar photovoltaic (PV) cells is one of the most attractive solutions for providing power to rural areas due to their cost-effectiveness, reliability and environment-friendly attributes. Therefore, a techno-economic feasibility study has been undertaken to investigate the prospects of renewable energy-based islanded microgrids to support rural electrification to power both households and irrigation systems. Three case studies based on the operation time of irrigation pumps during the day are developed using the HOMER Pro Microgrid Analysis Tool to identify the optimised configurations for the proposed system. The optimised configurations are then assessed considering the performance matrices of the cost of electricity (COE), net present cost (NPC), greenhouse gas (GHG) emissions and renewable energy fraction (RF). From the analyses, it is perceived that the operation of irrigation pumps at different times of a day is a significant influence, and the optimum method considering techno-economical evaluation is to run the irrigation pumps during the daytime by solar PV. It is evident that the proposed islanded microgrid has significant potentialities in powering irrigation systems as well as rural electrification with low energy generation costs, a contribution to the reduction of global warming and to ameliorating the energy crisis in Bangladesh in order to achieve a sustainable future.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1283/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1283/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Ferdous, S.M.; Shahnia, F.; Shafiullah, GM.;A standalone microgrid (MG) may frequently experience overloading owing to insufficient power generation or excessive renewable-based generation, which can cause unacceptable voltage and frequency deviations. Such problems are conventionally alleviated by load-shedding or renewable curtailment. Alternatively, autonomously operating MGs can be provisionally connected to facilitate temporary power exchange. The power-exchange link among the MGs can be of different types, e.g., three-phase ac, single-phase ac, or dc-link and power electronic converter-interfaced. All these topologies can facilitate power exchange, but they differ with regard to stability and robustness. In the present study, the stability and robustness of such structures are investigated, and the effects of factors such as the length of the interconnecting line among the MGs, the amount of power supplied to the troubled MGs, and the number of coupled MGs are compared. The stability and robustness of the structures are evaluated in Matlab.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/cjee.2021.000038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/cjee.2021.000038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 AustraliaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Ferdous, S.M.; Shahnia, F.; Shafiullah, GM.;A standalone microgrid (MG) may frequently experience overloading owing to insufficient power generation or excessive renewable-based generation, which can cause unacceptable voltage and frequency deviations. Such problems are conventionally alleviated by load-shedding or renewable curtailment. Alternatively, autonomously operating MGs can be provisionally connected to facilitate temporary power exchange. The power-exchange link among the MGs can be of different types, e.g., three-phase ac, single-phase ac, or dc-link and power electronic converter-interfaced. All these topologies can facilitate power exchange, but they differ with regard to stability and robustness. In the present study, the stability and robustness of such structures are investigated, and the effects of factors such as the length of the interconnecting line among the MGs, the amount of power supplied to the troubled MGs, and the number of coupled MGs are compared. The stability and robustness of the structures are evaluated in Matlab.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/cjee.2021.000038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/cjee.2021.000038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 AustraliaPublisher:MDPI AG Authors: Izaz Zunnurain; Md. Maruf; Md. Rahman; GM Shafiullah;To facilitate the possible technology and demand changes in a renewable-energy dominated future energy system, an integrated approach that involves Renewable Energy Sources (RES)-based generation, cutting-edge communication strategies, and advanced Demand Side Management (DSM) is essential. A Home Energy Management System (HEMS) with integrated Demand Response (DR) programs is able to perform optimal coordination and scheduling of various smart appliances. This paper develops an advanced DSM framework for microgrids, which encompasses modeling of a microgrid, inclusion of a smart HEMS comprising of smart load monitoring and an intelligent load controller, and finally, incorporation of a DR strategy to reduce peak demand and energy costs. Effectiveness of the proposed framework is assessed through a case study analysis, by investigation of DR opportunities and identification of energy savings for the developed model on a typical summer day in Western Australia. From the case study analysis, it is evident that a maximum amount of 2.95 kWh energy can be shifted to low demand periods, which provides a total daily energy savings of 3%. The total energy cost per day is AU$2.50 and AU$3.49 for a house with and without HEMS, respectively. Finally, maximum possible peak shaving, maximum shiftable energy, and maximum standby power losses and energy cost savings with or without HEMS have been calculated to identify the energy saving opportunities of the proposed strategy for a microgrid of 100 houses with solar, wind, and a back-up diesel generator in the generation side.
Infrastructures arrow_drop_down InfrastructuresOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2412-3811/3/4/50/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/infrastructures3040050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Infrastructures arrow_drop_down InfrastructuresOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2412-3811/3/4/50/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/infrastructures3040050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 AustraliaPublisher:MDPI AG Authors: Izaz Zunnurain; Md. Maruf; Md. Rahman; GM Shafiullah;To facilitate the possible technology and demand changes in a renewable-energy dominated future energy system, an integrated approach that involves Renewable Energy Sources (RES)-based generation, cutting-edge communication strategies, and advanced Demand Side Management (DSM) is essential. A Home Energy Management System (HEMS) with integrated Demand Response (DR) programs is able to perform optimal coordination and scheduling of various smart appliances. This paper develops an advanced DSM framework for microgrids, which encompasses modeling of a microgrid, inclusion of a smart HEMS comprising of smart load monitoring and an intelligent load controller, and finally, incorporation of a DR strategy to reduce peak demand and energy costs. Effectiveness of the proposed framework is assessed through a case study analysis, by investigation of DR opportunities and identification of energy savings for the developed model on a typical summer day in Western Australia. From the case study analysis, it is evident that a maximum amount of 2.95 kWh energy can be shifted to low demand periods, which provides a total daily energy savings of 3%. The total energy cost per day is AU$2.50 and AU$3.49 for a house with and without HEMS, respectively. Finally, maximum possible peak shaving, maximum shiftable energy, and maximum standby power losses and energy cost savings with or without HEMS have been calculated to identify the energy saving opportunities of the proposed strategy for a microgrid of 100 houses with solar, wind, and a back-up diesel generator in the generation side.
Infrastructures arrow_drop_down InfrastructuresOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2412-3811/3/4/50/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/infrastructures3040050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Infrastructures arrow_drop_down InfrastructuresOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2412-3811/3/4/50/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/infrastructures3040050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Authors: Shafiullah, GM.; Arif, M.T.; Oo, A.M.T.;A recent issue of increasing public focus is the need for robust, sustainable and climate friendly power systems that are intelligent, reliable and green. The intermittent nature of renewable energy generation and the associated power electronic inverters creates a number of potential challenges in integrating large-scale renewable energy (RE) into the grid that affects power quality of the distribution network. Therefore, this study initially, investigates the potential technical impacts in particular voltage regulation, active and reactive power variations, transformer loading and current and voltage harmonics causes with RE integration. Then, to reduce the level of impacts observed, STATCOM and energy storage system (both optimised) were integrated into the network that ensures a smooth power supply to the customers. As a case study, the Berserker Street Feeder, Frenchville Substation under Rockhampton distribution network, Central Queensland, Australia has been considered. Similar analyses also carried out with the IEEE 13 bus network to investigate the potential technical challenges of RE integration and identify suitable mitigation measures. Results shows that integration of both optimised STATCOM and energy storage enhances the overall power quality of the power network as it improves voltage regulation, power distribution, and transformer utilisation and reduce total harmonic distortion of the power network.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Authors: Shafiullah, GM.; Arif, M.T.; Oo, A.M.T.;A recent issue of increasing public focus is the need for robust, sustainable and climate friendly power systems that are intelligent, reliable and green. The intermittent nature of renewable energy generation and the associated power electronic inverters creates a number of potential challenges in integrating large-scale renewable energy (RE) into the grid that affects power quality of the distribution network. Therefore, this study initially, investigates the potential technical impacts in particular voltage regulation, active and reactive power variations, transformer loading and current and voltage harmonics causes with RE integration. Then, to reduce the level of impacts observed, STATCOM and energy storage system (both optimised) were integrated into the network that ensures a smooth power supply to the customers. As a case study, the Berserker Street Feeder, Frenchville Substation under Rockhampton distribution network, Central Queensland, Australia has been considered. Similar analyses also carried out with the IEEE 13 bus network to investigate the potential technical challenges of RE integration and identify suitable mitigation measures. Results shows that integration of both optimised STATCOM and energy storage enhances the overall power quality of the power network as it improves voltage regulation, power distribution, and transformer utilisation and reduce total harmonic distortion of the power network.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Wayan G. Santika; M. Anisuzzaman; Parisa A. Bahri; G.M. Shafiullah; Gloria V. Rupf; Tania Urmee;Abstract Energy is a key enabler in achieving the Sustainable Development Goals (SDGs) as energy plays the pivotal role in ending poverty and hunger, providing healthcare, education, and water, as well as sustaining economic growth and protecting the environment. Consequently, since the SDGs are executable only at local and national levels, mainstreaming the SDGs into local/national development planning will put pressure on the country’s energy sector. Considering the broad scope of the SDGs, countries will prioritize different SDG targets based on their urgencies, resources, and capabilities. However, energy linkages with the SDGs and their targets are complex, with direct and indirect connections, synergies, and trade-offs. More importantly, there is a lack of capacity among policymakers to be able to develop an SDGs-responsive energy plan, as there is no guidance on how the impact of linkages can be translated into local/national energy planning. This study aims to examine the complexity of the interconnections between energy and the SDGs, as well as give examples of how these linkages can be quantified. Twenty-five SDG targets with direct links to energy are identified in this study, and a map of the multidimensional interaction between them are presented. The study also provides examples of quantification of the targets/indicators into their energy requirements. The results of the study will help energy planners and policymakers forecast energy demand more accurately for energy planning and policies under the SDGs regime.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2018.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu148 citations 148 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2018.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Wayan G. Santika; M. Anisuzzaman; Parisa A. Bahri; G.M. Shafiullah; Gloria V. Rupf; Tania Urmee;Abstract Energy is a key enabler in achieving the Sustainable Development Goals (SDGs) as energy plays the pivotal role in ending poverty and hunger, providing healthcare, education, and water, as well as sustaining economic growth and protecting the environment. Consequently, since the SDGs are executable only at local and national levels, mainstreaming the SDGs into local/national development planning will put pressure on the country’s energy sector. Considering the broad scope of the SDGs, countries will prioritize different SDG targets based on their urgencies, resources, and capabilities. However, energy linkages with the SDGs and their targets are complex, with direct and indirect connections, synergies, and trade-offs. More importantly, there is a lack of capacity among policymakers to be able to develop an SDGs-responsive energy plan, as there is no guidance on how the impact of linkages can be translated into local/national energy planning. This study aims to examine the complexity of the interconnections between energy and the SDGs, as well as give examples of how these linkages can be quantified. Twenty-five SDG targets with direct links to energy are identified in this study, and a map of the multidimensional interaction between them are presented. The study also provides examples of quantification of the targets/indicators into their energy requirements. The results of the study will help energy planners and policymakers forecast energy demand more accurately for energy planning and policies under the SDGs regime.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2018.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu148 citations 148 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2018.11.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu