- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Sweden, United Kingdom, Ireland, Netherlands, France, Australia, France, France, France, France, France, SwitzerlandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | Peatlands and the global ...UKRI| Peatlands and the global Carbon cycle during the past millennium: a global assessment using observations and modelsAtte Korhola; Tatiana Blyakharchuk; Miriam C. Jones; Michael J. Clifford; Pierre Friedlingstein; Charly Massa; Paul Mathijssen; Eric S. Klein; Yan Zhao; Sarah A. Finkelstein; Jonathan E. Nichols; Gabriel Magnan; Rob Marchant; Fraser J.G. Mitchell; Philip Camill; Tim Mighall; Maara S. Packalen; David W. Beilman; Steve Moreton; Terri Lacourse; D. Mauquoy; James R. Holmquist; T. Edward Turner; T. Edward Turner; Lisa C. Orme; Lisa C. Orme; Susan Page; Chris D. Jones; Glen M. MacDonald; Svante Björck; A. Britta K. Sannel; Ulla Kokfelt; Helen Mackay; Nicole K. Sanderson; Antonio Martínez Cortizas; Mariusz Lamentowicz; I. Colin Prentice; Esther Githumbi; Joana Zaragoza-Castells; Robert K. Booth; Edgar Karofeld; Julie Loisel; Colin J Courtney-Mustaphi; Colin J Courtney-Mustaphi; Bas van Geel; Graeme T. Swindles; Angela V. Gallego-Sala; Joan Bunbury; François De Vleeschouwer; Dan J. Charman; Joanna Uglow; David Large; Stephen Robinson; Natascha Steinberg; Minna Väliranta; Donna Carless; Michelle Garneau; Guoping Wang; Markku Mäkilä; Thomas P. Roland; Simon van Bellen; Katarzyna Marcisz; Katarzyna Marcisz; Barbara Fiałkiewicz-Kozieł; Pirita Oksanen; Rixt de Jong; Elizabeth L. Cressey; Marjolein van der Linden; Christopher Bochicchio; Zicheng Yu; Zicheng Yu; John Hribjlan; Paul D.M. Hughes; Patrick Moss; Martin Lavoie; Simon Brewer; Rodney A. Chimner; Matthew J. Amesbury; Noemí Silva-Sánchez; Gaël Le Roux;The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.
CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/168775/1/168775.pdfData sources: CORE (RIOXX-UK Aggregator)Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2018Data sources: Universiteit van Amsterdam Digital Academic RepositoryAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 218 citations 218 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 33visibility views 33 download downloads 22 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/168775/1/168775.pdfData sources: CORE (RIOXX-UK Aggregator)Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2018Data sources: Universiteit van Amsterdam Digital Academic RepositoryAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 Denmark, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Doctoral Training Grant (...UKRI| Doctoral Training Grant (DTG) to provide funding for 1 PhD studentshipSwindles, GT; Morris, PJ; Mullan, D; Watson, EJ; Turner, TE; Roland, TP; Amesbury, MJ; Kokfelt, U; Schoning, K; Pratte, S; Gallego-Sala, A; Charman, DJ; Sanderson, N; Garneau, M; Carrivick, JL; Woulds, C; Holden, J; Parry, L; Galloway, JM;AbstractPermafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms.
CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/113811/1/113811.pdfData sources: CORE (RIOXX-UK Aggregator)Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.nature.com/articles/srep17951Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep17951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 98 citations 98 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/113811/1/113811.pdfData sources: CORE (RIOXX-UK Aggregator)Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.nature.com/articles/srep17951Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep17951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 FinlandPublisher:Wiley Gabriel Magnan; Nicole K. Sanderson; Sanna Piilo; Steve Pratte; Minna Väliranta; Simon van Bellen; Hui Zhang; Michelle Garneau;AbstractNorthern peatlands are a major component of the global carbon (C) cycle. Widespread climate‐driven ecohydrological changes in these ecosystems can have major consequences on their C sequestration function. Here, we synthesize plant macrofossil data from 33 surficial peat cores from different ecoclimatic regions, with high‐resolution chronologies. The main objectives were to document recent ecosystem state shifts and explore their impact on C sequestration in high‐latitude undisturbed peatlands of northeastern Canada. Our synthesis shows widespread recent ecosystem shifts in peatlands, such as transitions from oligotrophic fens to bogs andSphagnumexpansion, coinciding with climate warming which has also influenced C accumulation during the last ~100 years. The rapid shifts towards drier bog communities and an expansion ofSphagnumsect.Acutifoliaafter 1980 CE were most pronounced in the northern subarctic sites and are concurrent with summer warming in northeastern Canada. These results provide further evidence of a northward migration ofSphagnum‐dominated peatlands in North America in response to climate change. The results also highlight differences in the timing of ecosystem shifts among peatlands and regions, reflecting internal peatland dynamics and varying responses of vegetation communities. Our study suggests that the recent rapid climate‐driven shifts from oligotrophic fen to drier bog communities have promoted plant productivity and thus peat C accumulation. We highlight the importance of considering recent ecohydrological trajectories when modelling the potential contribution of peatlands to climate change. Our study suggests that, contrary to expectations, peat C sequestration could be promoted in high‐latitude non‐permafrost peatlands where wet sedge fens may transition to drierSphagnumbog communities due to warmer and longer growing seasons.
HELDA - Digital Repo... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert HELDA - Digital Repo... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Sweden, United Kingdom, Ireland, Netherlands, France, Australia, France, France, France, France, France, SwitzerlandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | Peatlands and the global ...UKRI| Peatlands and the global Carbon cycle during the past millennium: a global assessment using observations and modelsAtte Korhola; Tatiana Blyakharchuk; Miriam C. Jones; Michael J. Clifford; Pierre Friedlingstein; Charly Massa; Paul Mathijssen; Eric S. Klein; Yan Zhao; Sarah A. Finkelstein; Jonathan E. Nichols; Gabriel Magnan; Rob Marchant; Fraser J.G. Mitchell; Philip Camill; Tim Mighall; Maara S. Packalen; David W. Beilman; Steve Moreton; Terri Lacourse; D. Mauquoy; James R. Holmquist; T. Edward Turner; T. Edward Turner; Lisa C. Orme; Lisa C. Orme; Susan Page; Chris D. Jones; Glen M. MacDonald; Svante Björck; A. Britta K. Sannel; Ulla Kokfelt; Helen Mackay; Nicole K. Sanderson; Antonio Martínez Cortizas; Mariusz Lamentowicz; I. Colin Prentice; Esther Githumbi; Joana Zaragoza-Castells; Robert K. Booth; Edgar Karofeld; Julie Loisel; Colin J Courtney-Mustaphi; Colin J Courtney-Mustaphi; Bas van Geel; Graeme T. Swindles; Angela V. Gallego-Sala; Joan Bunbury; François De Vleeschouwer; Dan J. Charman; Joanna Uglow; David Large; Stephen Robinson; Natascha Steinberg; Minna Väliranta; Donna Carless; Michelle Garneau; Guoping Wang; Markku Mäkilä; Thomas P. Roland; Simon van Bellen; Katarzyna Marcisz; Katarzyna Marcisz; Barbara Fiałkiewicz-Kozieł; Pirita Oksanen; Rixt de Jong; Elizabeth L. Cressey; Marjolein van der Linden; Christopher Bochicchio; Zicheng Yu; Zicheng Yu; John Hribjlan; Paul D.M. Hughes; Patrick Moss; Martin Lavoie; Simon Brewer; Rodney A. Chimner; Matthew J. Amesbury; Noemí Silva-Sánchez; Gaël Le Roux;The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.
CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/168775/1/168775.pdfData sources: CORE (RIOXX-UK Aggregator)Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2018Data sources: Universiteit van Amsterdam Digital Academic RepositoryAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 218 citations 218 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 33visibility views 33 download downloads 22 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2018Full-Text: http://eprints.gla.ac.uk/168775/1/168775.pdfData sources: CORE (RIOXX-UK Aggregator)Open Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)MURAL - Maynooth University Research Archive LibraryArticle . 2018 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Nature Climate ChangeArticle . 2018Data sources: Universiteit van Amsterdam Digital Academic RepositoryAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0271-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 Denmark, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Doctoral Training Grant (...UKRI| Doctoral Training Grant (DTG) to provide funding for 1 PhD studentshipSwindles, GT; Morris, PJ; Mullan, D; Watson, EJ; Turner, TE; Roland, TP; Amesbury, MJ; Kokfelt, U; Schoning, K; Pratte, S; Gallego-Sala, A; Charman, DJ; Sanderson, N; Garneau, M; Carrivick, JL; Woulds, C; Holden, J; Parry, L; Galloway, JM;AbstractPermafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms.
CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/113811/1/113811.pdfData sources: CORE (RIOXX-UK Aggregator)Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.nature.com/articles/srep17951Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep17951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 98 citations 98 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/113811/1/113811.pdfData sources: CORE (RIOXX-UK Aggregator)Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.nature.com/articles/srep17951Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2015Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep17951&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 FinlandPublisher:Wiley Gabriel Magnan; Nicole K. Sanderson; Sanna Piilo; Steve Pratte; Minna Väliranta; Simon van Bellen; Hui Zhang; Michelle Garneau;AbstractNorthern peatlands are a major component of the global carbon (C) cycle. Widespread climate‐driven ecohydrological changes in these ecosystems can have major consequences on their C sequestration function. Here, we synthesize plant macrofossil data from 33 surficial peat cores from different ecoclimatic regions, with high‐resolution chronologies. The main objectives were to document recent ecosystem state shifts and explore their impact on C sequestration in high‐latitude undisturbed peatlands of northeastern Canada. Our synthesis shows widespread recent ecosystem shifts in peatlands, such as transitions from oligotrophic fens to bogs andSphagnumexpansion, coinciding with climate warming which has also influenced C accumulation during the last ~100 years. The rapid shifts towards drier bog communities and an expansion ofSphagnumsect.Acutifoliaafter 1980 CE were most pronounced in the northern subarctic sites and are concurrent with summer warming in northeastern Canada. These results provide further evidence of a northward migration ofSphagnum‐dominated peatlands in North America in response to climate change. The results also highlight differences in the timing of ecosystem shifts among peatlands and regions, reflecting internal peatland dynamics and varying responses of vegetation communities. Our study suggests that the recent rapid climate‐driven shifts from oligotrophic fen to drier bog communities have promoted plant productivity and thus peat C accumulation. We highlight the importance of considering recent ecohydrological trajectories when modelling the potential contribution of peatlands to climate change. Our study suggests that, contrary to expectations, peat C sequestration could be promoted in high‐latitude non‐permafrost peatlands where wet sedge fens may transition to drierSphagnumbog communities due to warmer and longer growing seasons.
HELDA - Digital Repo... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert HELDA - Digital Repo... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu