- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025 PolandPaltrinieri, Laura; Razgour, Orly; Santini, Luca; Russo, Danilo; Aihartza, Joxerra; Aizpurua, Ostaizka; Amorim, Francisco; Ancillotto, Leonardo; Bilgin, Rasit; Briggs, Philip; Cantù-Salazar, Lisette; Cistrone, Luca; Dechmann, Dina; Eldegard, Katrine; Fjelldal, Mari; Froidevaux, Jérémy; Garin, Inazio; Hamel, Luke; Juste, Javier; Korine, Carmi; Leuchtmann, Maxime; Martinoli, Adriano; Mas, Maria; Mathews, Fiona; McKay, Reed; Molenaar, Thijs; Morris, Colin; Nistreanu, Victoria; Olival, Kevin; Pereswiet-Soltan, Andrea; Péter, Áron; Phelps, Kendra; Pope, Lucy; Rebelo, Hugo; Preatoni, Damiano; Puig-Monserat, Xavier; Roche, Niamh; Ruczyński, Ireneusz; D. Sándor, Attila; Sørås, Rune; Spada, Martina; Toshkova, Nia; van der Kooij, Jeroen; Voigt, Christian; Zegarek, Marcin; Benítez-López, Ana;According to Bergmann's and Allen's rules, climate change may drive morphological shifts in species, affecting body size and appendage length. These rules predict that species in colder climates tend to be larger and have shorter appendages to improve thermoregulation. Bats are thought to be sensitive to climate and are therefore expected to respond to climatic changes across space and time. We conducted a phylogenetic meta‐analysis on > 27 000 forearm length (FAL) and body mass (BM) measurements from 20 sedentary European bat species to examine body size patterns. We assessed the relationships between body size and environmental variables (winter and summer temperatures, and summer precipitation) across geographic locations, and also analysed temporal trends in body size. We found sex‐specific morphological shifts in the body size of European bats in response to temperature and precipitation patterns across space, but no clear temporal changes due to high interspecific variability. Across Europe, male FAL decreased with increasing summer and winter temperatures, and BM increased with greater precipitation. In contrast, both FAL and BM of female bats increased with summer precipitation and decreased with winter temperatures. Our data can confirm Bergmann's rule for both males and females, while females' BM variations are also related to summer precipitation, suggesting a potential link to resource availability. Allen's rule is confirmed only in males in relation to summer temperature, while in females FAL and BM decrease proportionally with increasing temperature, maintaining a constant allometric relationship incompatible with Allen's rule. This study provides new insights into sex and species‐dependent morphological changes in bat body size in response to temperature and precipitation patterns. It highlights how body size variation reflects adaptations to temperature and precipitation patterns, thus providing insights into potential species‐level morphological responses to climate change across Europe.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1002/ecog.0...Article . 2025Data sources: The Knowledge Base of the University of Gdańskadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___02463::f6e32c507d2bb051f593b1b11d503152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1002/ecog.0...Article . 2025Data sources: The Knowledge Base of the University of Gdańskadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___02463::f6e32c507d2bb051f593b1b11d503152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Finland, FrancePublisher:Wiley Paltrinieri, Laura; Razgour, Orly; Santini, Luca; Russo, Danilo; Aihartza, Joxerra; Aizpurua, Ostaizka; Amorim, Francisco; Ancillotto, Leonardo; Bidziński, Konrad; Bilgin, Rasit; Briggs, Philip; Cantù-Salazar, Lisette; Ciechanowski, Mateusz; Cistrone, Luca; Dechmann, Dina; Eldegard, Katrine; Fjelldal, Mari; Froidevaux, Jérémy; Furmankiewicz, Joanna; Garin, Inazio; Hamel, Luke; Ibanez, Carlos; Jankowska-Jarek, Martyna; Juste, Javier; Korine, Carmi; Lesiński, Grzegorz; Leuchtmann, Maxime; Martinoli, Adriano; Mas, Maria; Mathews, Fiona; Mckay, Reed; Molenaar, Thijs; Morris, Colin; Nistreanu, Victoria; Olival, Kevin; Pereswiet-Soltan, Andrea; Péter, Áron; Phelps, Kendra; Pontier, Dominique; Pope, Lucy; Rebelo, Hugo; Preatoni, Damiano; Puig-Monserat, Xavier; Roche, Niamh; Ruczyński, Ireneusz; D. Sándor, Attila; Sørås, Rune; Spada, Martina; Toshkova, Nia; van der Kooij, Jeroen; Voigt, Christian; Wikar, Zuzanna; Zapart, Aneta; Zegarek, Marcin; Benítez-López, Ana;doi: 10.1002/ecog.07663
handle: 10138/595866
According to Bergmann's and Allen's rules, climate change may drive morphological shifts in species, affecting body size and appendage length. These rules predict that species in colder climates tend to be larger and have shorter appendages to improve thermoregulation. Bats are thought to be sensitive to climate and are therefore expected to respond to climatic changes across space and time. We conducted a phylogenetic meta‐analysis on > 27 000 forearm length (FAL) and body mass (BM) measurements from 20 sedentary European bat species to examine body size patterns. We assessed the relationships between body size and environmental variables (winter and summer temperatures, and summer precipitation) across geographic locations, and also analysed temporal trends in body size. We found sex‐specific morphological shifts in the body size of European bats in response to temperature and precipitation patterns across space, but no clear temporal changes due to high interspecific variability. Across Europe, male FAL decreased with increasing summer and winter temperatures, and BM increased with greater precipitation. In contrast, both FAL and BM of female bats increased with summer precipitation and decreased with winter temperatures. Our data can confirm Bergmann's rule for both males and females, while females' BM variations are also related to summer precipitation, suggesting a potential link to resource availability. Allen's rule is confirmed only in males in relation to summer temperature, while in females FAL and BM decrease proportionally with increasing temperature, maintaining a constant allometric relationship incompatible with Allen's rule. This study provides new insights into sex and species‐dependent morphological changes in bat body size in response to temperature and precipitation patterns. It highlights how body size variation reflects adaptations to temperature and precipitation patterns, thus providing insights into potential species‐level morphological responses to climate change across Europe.
Ecography arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecog.07663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecography arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecog.07663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, ItalyPublisher:Wiley Funded by:FCT | 2020.01129.CEECIND/CP1601/CT0004FCT| 2020.01129.CEECIND/CP1601/CT0004Francesca Festa; Leonardo Ancillotto; Luca Santini; Michela Pacifici; Ricardo Rocha; Nia Toshkova; Francisco Amorim; Ana Benítez-López; Adi Domer; Daniela Hamidovi; Stephanie Kramer-Schadt; Fiona Mathews; Viktoriia Radchuk; Hugo Rebelo; Ireneusz Ruczynski; Estelle Solem; Asaf Tsoar; Danilo Russo; Orly Razgour;ABSTRACTUnderstanding how species respond to climate change is key to informing vulnerability assessments and designing effective conservation strategies, yet research efforts on wildlife responses to climate change fail to deliver a representative overview due to inherent biases. Bats are a species‐rich, globally distributed group of organisms that are thought to be particularly sensitive to the effects of climate change because of their high surface‐to‐volume ratios and low reproductive rates. We systematically reviewed the literature on bat responses to climate change to provide an overview of the current state of knowledge, identify research gaps and biases and highlight future research needs. We found that studies are geographically biased towards Europe, North America and Australia, and temperate and Mediterranean biomes, thus missing a substantial proportion of bat diversity and thermal responses. Less than half of the published studies provide concrete evidence for bat responses to climate change. For over a third of studied bat species, response evidence is only based on predictive species distribution models. Consequently, the most frequently reported responses involve range shifts (57% of species) and changes in patterns of species diversity (26%). Bats showed a variety of responses, including both positive (e.g. range expansion and population increase) and negative responses (range contraction and population decrease), although responses to extreme events were always negative or neutral. Spatial responses varied in their outcome and across families, with almost all taxonomic groups featuring both range expansions and contractions, while demographic responses were strongly biased towards negative outcomes, particularly among Pteropodidae and Molossidae. The commonly used correlative modelling approaches can be applied to many species, but do not provide mechanistic insight into behavioural, physiological, phenological or genetic responses. There was a paucity of experimental studies (26%), and only a small proportion of the 396 bat species covered in the examined studies were studied using long‐term and/or experimental approaches (11%), even though they are more informative about the effects of climate change. We emphasise the need for more empirical studies to unravel the multifaceted nature of bats' responses to climate change and the need for standardised study designs that will enable synthesis and meta‐analysis of the literature. Finally, we stress the importance of overcoming geographic and taxonomic disparities through strengthening research capacity in the Global South to provide a more comprehensive view of terrestrial biodiversity responses to climate change.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaOpen Research ExeterArticle . 2022License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36054527Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaOpen Research ExeterArticle . 2022License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36054527Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 PolandPaltrinieri, Laura; Razgour, Orly; Santini, Luca; Russo, Danilo; Aihartza, Joxerra; Aizpurua, Ostaizka; Amorim, Francisco; Ancillotto, Leonardo; Bilgin, Rasit; Briggs, Philip; Cantù-Salazar, Lisette; Cistrone, Luca; Dechmann, Dina; Eldegard, Katrine; Fjelldal, Mari; Froidevaux, Jérémy; Garin, Inazio; Hamel, Luke; Juste, Javier; Korine, Carmi; Leuchtmann, Maxime; Martinoli, Adriano; Mas, Maria; Mathews, Fiona; McKay, Reed; Molenaar, Thijs; Morris, Colin; Nistreanu, Victoria; Olival, Kevin; Pereswiet-Soltan, Andrea; Péter, Áron; Phelps, Kendra; Pope, Lucy; Rebelo, Hugo; Preatoni, Damiano; Puig-Monserat, Xavier; Roche, Niamh; Ruczyński, Ireneusz; D. Sándor, Attila; Sørås, Rune; Spada, Martina; Toshkova, Nia; van der Kooij, Jeroen; Voigt, Christian; Zegarek, Marcin; Benítez-López, Ana;According to Bergmann's and Allen's rules, climate change may drive morphological shifts in species, affecting body size and appendage length. These rules predict that species in colder climates tend to be larger and have shorter appendages to improve thermoregulation. Bats are thought to be sensitive to climate and are therefore expected to respond to climatic changes across space and time. We conducted a phylogenetic meta‐analysis on &gt; 27 000 forearm length (FAL) and body mass (BM) measurements from 20 sedentary European bat species to examine body size patterns. We assessed the relationships between body size and environmental variables (winter and summer temperatures, and summer precipitation) across geographic locations, and also analysed temporal trends in body size. We found sex‐specific morphological shifts in the body size of European bats in response to temperature and precipitation patterns across space, but no clear temporal changes due to high interspecific variability. Across Europe, male FAL decreased with increasing summer and winter temperatures, and BM increased with greater precipitation. In contrast, both FAL and BM of female bats increased with summer precipitation and decreased with winter temperatures. Our data can confirm Bergmann's rule for both males and females, while females' BM variations are also related to summer precipitation, suggesting a potential link to resource availability. Allen's rule is confirmed only in males in relation to summer temperature, while in females FAL and BM decrease proportionally with increasing temperature, maintaining a constant allometric relationship incompatible with Allen's rule. This study provides new insights into sex and species‐dependent morphological changes in bat body size in response to temperature and precipitation patterns. It highlights how body size variation reflects adaptations to temperature and precipitation patterns, thus providing insights into potential species‐level morphological responses to climate change across Europe.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1002/ecog.0...Article . 2025Data sources: The Knowledge Base of the University of Gdańskadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___02463::f6e32c507d2bb051f593b1b11d503152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1002/ecog.0...Article . 2025Data sources: The Knowledge Base of the University of Gdańskadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___02463::f6e32c507d2bb051f593b1b11d503152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Finland, FrancePublisher:Wiley Paltrinieri, Laura; Razgour, Orly; Santini, Luca; Russo, Danilo; Aihartza, Joxerra; Aizpurua, Ostaizka; Amorim, Francisco; Ancillotto, Leonardo; Bidziński, Konrad; Bilgin, Rasit; Briggs, Philip; Cantù-Salazar, Lisette; Ciechanowski, Mateusz; Cistrone, Luca; Dechmann, Dina; Eldegard, Katrine; Fjelldal, Mari; Froidevaux, Jérémy; Furmankiewicz, Joanna; Garin, Inazio; Hamel, Luke; Ibanez, Carlos; Jankowska-Jarek, Martyna; Juste, Javier; Korine, Carmi; Lesiński, Grzegorz; Leuchtmann, Maxime; Martinoli, Adriano; Mas, Maria; Mathews, Fiona; Mckay, Reed; Molenaar, Thijs; Morris, Colin; Nistreanu, Victoria; Olival, Kevin; Pereswiet-Soltan, Andrea; Péter, Áron; Phelps, Kendra; Pontier, Dominique; Pope, Lucy; Rebelo, Hugo; Preatoni, Damiano; Puig-Monserat, Xavier; Roche, Niamh; Ruczyński, Ireneusz; D. Sándor, Attila; Sørås, Rune; Spada, Martina; Toshkova, Nia; van der Kooij, Jeroen; Voigt, Christian; Wikar, Zuzanna; Zapart, Aneta; Zegarek, Marcin; Benítez-López, Ana;doi: 10.1002/ecog.07663
handle: 10138/595866
According to Bergmann's and Allen's rules, climate change may drive morphological shifts in species, affecting body size and appendage length. These rules predict that species in colder climates tend to be larger and have shorter appendages to improve thermoregulation. Bats are thought to be sensitive to climate and are therefore expected to respond to climatic changes across space and time. We conducted a phylogenetic meta‐analysis on > 27 000 forearm length (FAL) and body mass (BM) measurements from 20 sedentary European bat species to examine body size patterns. We assessed the relationships between body size and environmental variables (winter and summer temperatures, and summer precipitation) across geographic locations, and also analysed temporal trends in body size. We found sex‐specific morphological shifts in the body size of European bats in response to temperature and precipitation patterns across space, but no clear temporal changes due to high interspecific variability. Across Europe, male FAL decreased with increasing summer and winter temperatures, and BM increased with greater precipitation. In contrast, both FAL and BM of female bats increased with summer precipitation and decreased with winter temperatures. Our data can confirm Bergmann's rule for both males and females, while females' BM variations are also related to summer precipitation, suggesting a potential link to resource availability. Allen's rule is confirmed only in males in relation to summer temperature, while in females FAL and BM decrease proportionally with increasing temperature, maintaining a constant allometric relationship incompatible with Allen's rule. This study provides new insights into sex and species‐dependent morphological changes in bat body size in response to temperature and precipitation patterns. It highlights how body size variation reflects adaptations to temperature and precipitation patterns, thus providing insights into potential species‐level morphological responses to climate change across Europe.
Ecography arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecog.07663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecography arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecog.07663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, ItalyPublisher:Wiley Funded by:FCT | 2020.01129.CEECIND/CP1601/CT0004FCT| 2020.01129.CEECIND/CP1601/CT0004Francesca Festa; Leonardo Ancillotto; Luca Santini; Michela Pacifici; Ricardo Rocha; Nia Toshkova; Francisco Amorim; Ana Benítez-López; Adi Domer; Daniela Hamidovi; Stephanie Kramer-Schadt; Fiona Mathews; Viktoriia Radchuk; Hugo Rebelo; Ireneusz Ruczynski; Estelle Solem; Asaf Tsoar; Danilo Russo; Orly Razgour;ABSTRACTUnderstanding how species respond to climate change is key to informing vulnerability assessments and designing effective conservation strategies, yet research efforts on wildlife responses to climate change fail to deliver a representative overview due to inherent biases. Bats are a species‐rich, globally distributed group of organisms that are thought to be particularly sensitive to the effects of climate change because of their high surface‐to‐volume ratios and low reproductive rates. We systematically reviewed the literature on bat responses to climate change to provide an overview of the current state of knowledge, identify research gaps and biases and highlight future research needs. We found that studies are geographically biased towards Europe, North America and Australia, and temperate and Mediterranean biomes, thus missing a substantial proportion of bat diversity and thermal responses. Less than half of the published studies provide concrete evidence for bat responses to climate change. For over a third of studied bat species, response evidence is only based on predictive species distribution models. Consequently, the most frequently reported responses involve range shifts (57% of species) and changes in patterns of species diversity (26%). Bats showed a variety of responses, including both positive (e.g. range expansion and population increase) and negative responses (range contraction and population decrease), although responses to extreme events were always negative or neutral. Spatial responses varied in their outcome and across families, with almost all taxonomic groups featuring both range expansions and contractions, while demographic responses were strongly biased towards negative outcomes, particularly among Pteropodidae and Molossidae. The commonly used correlative modelling approaches can be applied to many species, but do not provide mechanistic insight into behavioural, physiological, phenological or genetic responses. There was a paucity of experimental studies (26%), and only a small proportion of the 396 bat species covered in the examined studies were studied using long‐term and/or experimental approaches (11%), even though they are more informative about the effects of climate change. We emphasise the need for more empirical studies to unravel the multifaceted nature of bats' responses to climate change and the need for standardised study designs that will enable synthesis and meta‐analysis of the literature. Finally, we stress the importance of overcoming geographic and taxonomic disparities through strengthening research capacity in the Global South to provide a more comprehensive view of terrestrial biodiversity responses to climate change.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaOpen Research ExeterArticle . 2022License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36054527Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaOpen Research ExeterArticle . 2022License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36054527Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu