- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 SwitzerlandPublisher:Elsevier BV Authors: Jonathan Chambers; Kapil Narula; Matthias Sulzer; Martin K. Patel;Abstract In its 2016 Heating and Cooling Strategy, the European Commission (EC) highlighted the strategic importance of heating demand for the energy demand reduction, and further noted that District Heat Networks (DHN) can play an important role in decarbonising this sector. This study applied a thermal atlas approach to map the potential for district heat networks in Switzerland. It extended existing methods with a novel approach to estimating linear thermal demand density in DHN at a national scale. DHN potential for current-generation high temperature networks as well as cutting-edge low temperature networks were compared for current building space heating and hot water demand as well as for two demand reduction scenarios. The method was tested by comparing its results to those of a local engineering study conducted for a Swiss municipality (Brig-Glis). The potential percentage of demand supplied by high temperature DHN was shown to decrease from 66% to 41% with energy saving while the potential for low temperature systems increased significantly from 2.1% to 42%. The percentage of heat demand covered by heat networks decreases less than the percentage of buildings covered, reflecting the strength of heat networks for supplying large fractions of thermal demand in geographically confined areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 29 Nov 2022 Austria, United Kingdom, Spain, Switzerland, Spain, Sweden, Australia, United Kingdom, United Kingdom, Spain, Spain, Germany, AustraliaPublisher:Elsevier BV Funded by:EC | EARLY-ADAPT, WT | Future of Animal-sourced ..., EC | FirEUrisk +5 projectsEC| EARLY-ADAPT ,WT| Future of Animal-sourced Foods (FOAF) ,EC| FirEUrisk ,EC| CATALYSE ,WT| Lancet Countdown: Tracking Progress on Health and Climate Change ,EC| EXHAUSTION ,AKA| Health effects and associated socio-economic costs of increasing temperatures and wildfires - A global assessment ,EC| IDAlertVan Daalen, Kim R; Romanello, Marina; Rocklöv, Joacim; Semenza, Jan C; Tonne, Cathryn; Markandya, Anil; Dasandi, Niheer; Jankin, Slava; Achebak, Hicham; Ballester, Joan; Bechara, Hannah; Callaghan, Max W; Chambers, Jonathan; Dasgupta, Shouro; Drummond, Paul; Farooq, Zia; Gasparyan, Olga; Gonzalez-Reviriego, Nube; Hamilton, Ian; Hänninen, Risto; Kazmierczak, Aleksandra; Kendrovski, Vladimir; Kennard, Harry; Kiesewetter, Gregor; Lloyd, Simon J; Lotto Batista, Martin; Martinez-Urtaza, Jaime; Milà, Carles; Minx, Jan C; Nieuwenhuijsen, Mark; Palamarchuk, Julia; Quijal-Zamorano, Marcos; Robinson, Elizabeth JZ; Scamman, Daniel; Schmoll, Oliver; Sewe, Maquins Odhiambo; Sjödin, Henrik; Sofiev, Mikhail; Solaraju-Murali, Balakrishnan; Springmann, Marco; Triñanes, Joaquin; Anto, Josep M; Nilsson, Maria; Lowe, Rachel;The work of MSo and RH has been performed within the scope of H2020 project EXHAUSTION (grant number 820655) and Academy of Finland HEATCOST (grant number 334798). JMA acknowledges support from the Spanish Ministry of Science and Innovation and State Research Agency through the Centro de Excelencia Severo Ochoa 2019–23 programme (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA programme. JB acknowledges funding from the Ministry of Science and Innovation (MCIU) under grant agreement number RYC2018-025446-I (programme Ramón y Cajal). The computations of the mechanistic dengue-models (MOS and HS) were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at HPC2N. JR has been awarded a Chair in Artificial Intelligence in the Research of Infectious Diseases Impacted by Climate Change provided by the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship endowed by the Federal Ministry of Education and Research. HA, MQ-Z, and SJL were supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No 865564 (European Research Council Consolidator Grant EARLY-ADAPT). JP was supported by Academy of Finland projects PS4A and ALL-Impress. The Lancet Countdown in Europe received invaluable support from Shuzhou Yuan, Ran Zhang, Krishnamoorthy Manohara, and Reed Garvin (Data Science Lab, Hertie School, Germany), Tom de Groeve and Peter Salamon (European Commission), and Raúl Fernando Méndez Turrubiates (ISGlobal, Barcelona, Spain). We also thank Wenjia Cai, Shihui Zhang, and Jiyao Zhao (Department of Earth System Science, Tsinghua University, Beijing, China) for their technical advice.
ACU Research Bank arrow_drop_down Australian Catholic University: ACU Research BankArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedData sources: UPCommons. Portal del coneixement obert de la UPCPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedThe Lancet Public HealthArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2468-2667(22)00197-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 40visibility views 40 download downloads 54 Powered bymore_vert ACU Research Bank arrow_drop_down Australian Catholic University: ACU Research BankArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedData sources: UPCommons. Portal del coneixement obert de la UPCPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedThe Lancet Public HealthArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2468-2667(22)00197-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Chambers, Jonathan;Network analysis finds natural applications in geospatial information systems for a range of applications, notably for thermal grids, which are important for decarbonising thermal energy supply. These analyses are required to operate over a large range of geographic scales. This is a challenge for existing approaches, which face computational scaling challenges with the large datasets now available, such as building and road network data for an entire country. This work presents a system for geospatial modelling of thermal networks including their routing through the existing road network and calculation of flows through the network. This is in contrast to previous thermal network analysis work which could only work with simplified aggregated data.•We apply multi-level spatial clustering which enables parallelisation of work sets.•We develop algorithms and data processing pipelines for calculating network routing.•We use cluster-level caching to enable rapid evaluation of model variants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mex.2020.101072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mex.2020.101072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:IOP Publishing Authors: Selin Yilmaz; Jonathan Chambers; Martin Kumar Patel; Xiang Li;Abstract The large-scale deployment of smart meters has led to significant amount of electricity demand data available, driving it into the realm of Big Data. It is a major challenge to exploit this Big Data in order to characterise electricity use patterns and to support demand response policies. In this paper, we perform a featured-based cluster analysis on nine building archetypes (hospitals, schools, offices, hotels, flats, houses etc.) to identify electricity use patterns. Then, four metrics are developed, which are entropy, load curviness, peak intensity and index of hourly ramp rates, to measure these archetypes’ suitability to be involved in demand response schemes. A significant difference in electricity use patterns between the archetypes is found, as well as among the seasons and days of the week. We present a number of metrics for each archetype to establish which type of archetype should be prioritised for demand response programmes in terms of peak management, ramp rates as well as demand flexibility. A key finding of our study is that households offer more demand flexibility than the non-domestic sector and should therefore be incentivized to participate in dynamic electricity tariffs.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2042/1/012021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2042/1/012021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:Elsevier BV Jonathan Chambers; S. Zuberi; M. Jibran; Kapil Narula; Martin K. Patel;Industrial Excess Heat (IEH) is an underutilised resource which could contribute to decarbonising the heat supply. It is particularly well suited for supplying district heat networks (DHN), thereby enabling the capture and distribution of excess energy from industries and incineration plants. However, as heat cannot be readily transported over long distances, there is a need to analyse the balance of supply and demand over time taking into account the geospatial constraints placed on the linking of IEH supplies and DHN demands. This work presents an analysis of the potential for the supply of DHN systems using high and low network temperatures by IEH in Switzerland. A spatial clustering method is used to link potential supplies and demands, and monthly supply and demand curves are used to calculate the potential for IEH supply subject to spatiotemporal constraints. A further analysis deals with the technical potential for seasonal storage to shift surplus IEH energy from summer to winter. A total resource of 12TWh/y of IEH was found, but spatial and temporal constraints limited its utilisation to between 7.7TWh/y and 10.5TWh/y depending the scenario considered. 17.4% of total heat demand could be supplied by IEH using low temperature DHN and seasonal storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Peru, Singapore, France, United Kingdom, Denmark, Finland, Denmark, France, Switzerland, Peru, United Kingdom, GermanyPublisher:Elsevier BV Funded by:UKRI | UK Centre for Research on..., EC | EXHAUSTION, AKA | Health effects and associ... +5 projectsUKRI| UK Centre for Research on Energy Demand ,EC| EXHAUSTION ,AKA| Health effects and associated socio-economic costs of increasing temperatures and wildfires - A global assessment ,UKRI| Developing integrated environmental indicators for sustainable global food production and trade ,WT| Complex Urban Systems for Sustainability and Health (London Hub) ,WT| Lancet Countdown: Tracking Progress on Health and Climate Change ,EC| FirEUrisk ,WT| Sustainable and Healthy Food Systems (SHEFS)Romanello, Marina; Di Napoli, Claudia; Drummond, Paul; Green, Carole; Kennard, Harry; Lampard, Pete; Scamman, Daniel; Arnell, Nigel; Ayeb-Karlsson, Sonja; Berrang-ford, Lea; Belesova, Kristine; Bowen, Kathryn J.; Cai, Wenjia; Callaghan, Max W.; Campbell-Lendrum, Diarmid; Chambers, Jonathan; van Daalen, Kim R; Dalin, Carole; Dasandi, Niheer; Dasgupta, Shouro; Davies, Michael; Dominguez-Salas, Paula; Dubrow, Robert; Ebi, Kristie L.; Eckelman, Matthew; Ekins, Paul; Escobar, Luis E.; Georgeson, Lucien; Graham, Hilary; Gunther, Samuel H.; Hamilton, Ian; Hang, Yun; Hänninen, Risto; Hartinger, Stella; He, Kehan; Hess, Jeremy; Hsu, Shih Che; Jankin, Slava; Jamart, Louis; Jay, Ollie; Kelman, Ilan; Kiesewetter, Gregor; Kinney, Patrick L.; Kjellstrom, Tord; Kniveton, Dominic; Lee, Jason K.W.; Lemke, Bruno; Liu, Yang; Liu, Zhao; Lott, Melissa; Lotto Batista, Martin; Lowe, Rachel; MacGuire, Frances; Sewe, Maquins Odhiambo; Martinez-Urtaza, Jaime; Maslin, Mark; McAllister, Lucy; McGushin, Alice; McMichael, Celia; Mi, Zhifu; Milner, James; Minor, Kelton; Minx, Jan C.; Mohajeri, Nahid; Moradi-Lakeh, Maziar; Morrissey, Karyn; Munzert, Simon; Murray, Kris A.; Neville, Tara; Nilsson, Maria; Obradovich, Nick; O'Hare, Megan B; Oreszczyn, Tadj; Otto, Matthias; Owfi, Fereidoon; Pearman, Olivia; Rabbaniha, Mahnaz; Robinson, Elizabeth; Rocklöv, Joacim; Salas, Renee N.; Semenza, Jan, C.; Sherman, Jodi; Shi, Liuhua; Shumake-Guillemot, Joy; Silbert, Grant; Sofiev, Mikhail; Springmann, Marco; Stowell, Jennifer; Tabatabaei, Meisam; Taylor, Jonathon; Trinanes, Joaquin; Wagner, Fabian; Wilkinson, Paul; Winning, Matthew; Yglesias-González, Marisol; Zhang, Shihui; Gong, Peng; Montgomery, Hugh; Costello, Anthony;pmid: 36306815
pmc: PMC7616806
The 2022 report of the Lancet Countdown is published as the world confronts profound and concurrent systemic shocks. Countries and health systems continue to contend with the health, social, and economic impacts of the COVID-19 pandemic, while Russia’s invasion of Ukraine and a persistent fossil fuel overdependence has pushed the world into global energy and cost-of-living crises. As these crises unfold, climate change escalates unabated. Its worsening impacts are increasingly affecting the foundations of human health and wellbeing, exacerbating the vulnerability of the world’s populations to concurrent health threats. During 2021 and 2022, extreme weather events caused devastation across every continent, adding further pressure to health services already grappling with the impacts of the COVID-19 pandemic. Floods in Australia, Brazil, China, western Europe, Malaysia, Pakistan, South Africa, and South Sudan caused thousands of deaths, displaced hundreds of thousands of people, and caused billions of dollars in economic losses. Wildfires caused devastation in Canada, the USA, Greece, Algeria, Italy, Spain, and Türkiye, and record temperatures were recorded in many countries, including Australia, Canada, India, Italy, Oman, Türkiye, Pakistan, and the UK. With advancements in the science of detection and attribution studies, the influence of climate change over many events has now been quantified. Because of the rapidly increasing temperatures, vulnerable populations (adults older than 65 years, and children younger than one year of age) were exposed to 3·7 billion more heatwave days in 2021 than annually in 1986–2005 (indicator 1.1.2), and heat-related deaths increased by 68% between 2000–04 and 2017–21 (indicator 1.1.5), a death toll that was significantly exacerbated by the confluence of the COVID-19 pandemic. Simultaneously, the changing climate is affecting the spread of infectious diseases, putting populations at higher risk of emerging diseases and co-epidemics. Coastal waters are becoming more suitable for the transmission of Vibrio pathogens; the number of months suitable for malaria transmission increased by 31·3% in the highland areas of the Americas and 13·8% in the highland areas of Africa from 1951–60 to 2012–21, and the likelihood of dengue transmission rose by 12% in the same period (indicator 1.3.1). The coexistence of dengue outbreaks with the COVID-19 pandemic led to aggravated pressure on health systems, misdiagnosis, and difficulties in management of both diseases in many regions of South America, Asia, and Africa. The economic losses associated with climate change impacts are also increasing pressure on families and economies already challenged with the synergistic effects of the COVID-19 pandemic and the international cost-of-living and energy crises, further undermining the socioeconomic determinants that good health depends on. Heat exposure led to 470 billion potential labour hours lost globally in 2021 (indicator 1.1.4), with potential income losses equivalent to 0·72% of the global economic output, increasing to 5·6% of the GDP in low Human Development Index (HDI) countries, where workers are most vulnerable to the effects of financial fluctuations (indicator 4.1.3). Meanwhile, extreme weather events caused damage worth US$253 billion in 2021, particularly burdening people in low HDI countries in which almost none of the losses were insured (indicator 4.1.1). Through multiple and interconnected pathways, every dimension of food security is being affected by climate change, aggravating the impacts of other coexisting crises. The higher temperatures threaten crop yields directly, with the growth seasons of maize on average 9 days shorter in 2020, and the growth seasons of winter wheat and spring wheat 6 days shorter than for 1981–2010 globally (indicator 1.4). The threat to crop yields adds to the rising impact of extreme weather on supply chains, socioeconomic pressures, and the risk of infectious disease transmission, undermining food availability, access, stability, and utilisation. New analysis suggests that extreme heat was associated with 98 million more people reporting moderate to severe food insecurity in 2020 than annually in 1981–2010, in 103 countries analysed (indicator 1.4). The increasingly extreme weather worsens the stability of global food systems, acting in synergy with other concurrent crises to reverse progress towards hunger eradication. Indeed, the prevalence of undernourishment increased during the COVID-19 pandemic, and up to 161 million more people faced hunger during the COVID-19 pandemic in 2020 than in 2019. This situation is now worsened by Russia’s invasion of Ukraine and the energy and cost-of-living crises, with impacts on international agricultural production and supply chains threatening to result in 13 million additional people facing undernutrition in 2022. A DEBILITATED FIRST LINE OF DEFENCE: With the worsening health impacts of climate change compounding other coexisting crises, populations worldwide increasingly rely on health systems as their first line of defence. However, just as the need for healthcare rises, health systems worldwide are debilitated by the effects of the COVID-19 pandemic and the energy and cost-of-living crises. Urgent action is therefore needed to strengthen health-system resilience and to prevent a rapidly escalating loss of lives and to prevent suffering in a changing climate. However, only 48 (51%) of 95 countries reported having assessed their climate change adaptation needs (indicator 2.1.1) and, even after the profound impacts of COVID-19, only 60 (63%) countries reported a high to very high implementation status for health emergency management in 2021 (indicator 2.2.4). The scarcity of proactive adaptation is shown in the response to extreme heat. Despite the local cooling and overall health benefits of urban greenspaces, only 277 (27%) of 1038 global urban centres were at least moderately green in 2021 (indicator 2.2.3), and the number of households with air conditioning increased by 66% from 2000 to 2020, a maladaptive response that worsens the energy crisis and further increases urban heat, air pollution, and greenhouse gas emissions. As converging crises further threaten the world’s life-supporting systems, rapid, decisive, and coherent intersectoral action is essential to protect human health from the hazards of the rapidly changing climate. HEALTH AT THE MERCY OF FOSSIL FUELS: The year 2022 marks the 30th anniversary of the signing of the UN Framework Convention on Climate Change, in which countries agreed to prevent dangerous anthropogenic climate change and its deleterious effects on human health and welfare. However, little meaningful action has since followed. The carbon intensity of the global energy system has decreased by less than 1% since the UNFCCC was established, and global electricity generation is still dominated by fossil fuels, with renewable energy contributing to only 8·2% of the global total (indicator 3.1). Simultaneously, the total energy demand has risen by 59%, increasing energy-related emissions to a historical high in 2021. Current policies put the world on track to a catastrophic 2·7°C increase by the end of the century. Even with the commitments that countries set in the Nationally Determined Contributions (NDCs) updated up until November 2021, global emissions could be 13·7% above 2010 levels by 2030—far from the 43% decrease from current levels required to meet Paris Agreement goals and keep temperatures within the limits of adaptation. Fossil fuel dependence is not only undermining global health through increased climate change impacts, but also affects human health and wellbeing directly, through volatile and unpredictable fossil fuel markets, frail supply chains, and geopolitical conflicts. As a result, millions of people do not have access to the energy needed to keep their homes at healthy temperatures, preserve food and medication, and meet the seventh Sustainable Development Goal (to ensure access to affordable, reliable, sustainable, and modern energy for all). Without sufficient support, access to clean energy has been particularly slow in low HDI countries, and only 1·4% of their electricity came from modern renewables (mostly wind and solar power) in 2020 (indicator 3.1). An estimated 59% of healthcare facilities in low and middle-income countries still do not have access to the reliable electricity needed to provide basic care. Meanwhile, biomass accounts for as much as 31% of the energy consumed in the domestic sector globally, mostly from traditional sources—a proportion that increases to 96% in low HDI countries (indicator 3.2). The associated burden of disease is substantial, with the air in people’s homes exceeding WHO guidelines for safe concentrations of small particulate air pollution (PM(2·5)) in 2020 by 30-fold on average in the 62 countries assessed (indicator 3.2). After 6 years of improvement, the number of people without access to electricity increased in 2020 as a result of the socioeconomic pressures of the COVID-19 pandemic. The current energy and cost-of-living crises now threaten to reverse progress toward affordable, reliable, and sustainable energy, further undermining the socioeconomic determinants of health. Simultaneously, oil and gas companies are registering record profits, while their production strategies continue to undermine people’s lives and wellbeing. An analysis of the production strategies of 15 of the world’s largest oil and gas companies, as of February 2022, revealed they exceed their share of emissions consistent with 1·5°C of global heating (indicator 4.2.6) by 37% in 2030 and 103% in 2040, continuing to undermine efforts to deliver a low carbon, healthy, liveable future. Aggravating this situation even further, governments continue to incentivise fossil fuel production and consumption: 69 (80%) of 86 countries reviewed had net-negative carbon prices (ie, provided a net subsidy to fossil fuels) for a net total of US$400 billion in 2019, allocating amounts often comparable with or even exceeding their total health budgets (indicator 4.2.4). Simultaneously, wealthier countries failed to meet their commitment of mobilising the considerably lower sum of $100 billion annually by 2020 as agreed at the 2009 Copenhagen Accord to support climate action in “developing countries”, and climate efforts are being undercut by a profound scarcity of funding (indicator 2.1.1). The impacts of climate change on global economies, together with the recession triggered by COVID-19 and worsened by geopolitical instability, could paradoxically further reduce the willingness of countries to allocate the funds needed to enable a just climate transition. A HEALTH-CENTRED RESPONSE FOR A THRIVING FUTURE: The world is at a critical juncture. With countries facing concurrent crises, the implementation of long-term emissions-reduction policies risks being deflected or defeated by challenges wrongly perceived as more immediate. Addressing each of the concurrent crises in isolation risks alleviating one, while worsening another. Such a situation is emerging from the response to COVID-19, which has so far has not delivered the green recovery that the health community proposed, and, on the contrary, is aggravating climate change-related health risks. Less than one third of $3·11 trillion allocated to COVID-19 economic recovery is likely to reduce greenhouse gas emissions or air pollution, with the net effect likely to increase emissions. The COVID-19 pandemic affected climate action at the city level, and 239 (30%) of 798 cities reported that COVID-19 reduced financing available for climate action (indicator 2.1.3). As countries search for alternatives to Russian oil and gas, many continue to favour the burning of fossil fuels, with some even turning back to coal. Shifts in global energy supplies threaten to increase fossil fuel production. Even if implemented as a temporary transition, these responses could reverse progress on air quality improvement, irreversibly push the world off track from meeting the commitments set out in the Paris Agreement, and guarantee a future of accelerated climate change that threatens human survival. On the contrary, in this pivotal moment, a health-centred response to the current crises would still provide the opportunity for a low-carbon, resilient future, which not only avoids the health harms of accelerated climate change, but also delivers improved health and wellbeing through the associated co-benefits of climate action. Such response would see countries promptly shifting away from fossil fuels, reducing their dependence on fragile international oil and gas markets, and accelerating a just transition to clean energy sources. A health-centred response would reduce the likelihood of the most catastrophic climate change impacts, while improving energy security, creating an opportunity for economic recovery, and offering immediate health benefits. Improvements in air quality would help to prevent the 1·2 million deaths resulting from exposure to fossil fuel-derived ambient PM(2·5) in 2020 alone (indicator 3.3), and a health-centred energy transition would enhance low-carbon travel and increase urban green spaces, promoting physical activity, and improving physical and mental health. In the food sector, an accelerated transition to balanced and more plant-based diets would not only help reduce the 55% of agricultural sector emissions coming from red meat and milk production (indicator 3.5.1), but also prevent up to 11·5 million diet-related deaths annually (indicator 3.5.2), and substantially reduce the risk of zoonotic diseases. These health-focused shifts would reduce the burden of communicable and non-communicable diseases, reducing the strain on overwhelmed health-care providers. Importantly, accelerating climate change adaptation would lead to more robust health systems, minimising the negative impacts of future infectious disease outbreaks and geopolitical conflicts, and restoring the first line of defence of global populations. EMERGING GLIMMERS OF HOPE: Despite decades of insufficient action, emerging, albeit few, signs of change provide some hope that a health-centred response might be starting to emerge. Individual engagement with the health dimensions of climate change, essential to drive and enable an accelerated response, increased from 2020 to 2021 (indicator 5.2), and coverage of health and climate change in the media reached a new record high in 2021, with a 27% increase from 2020 (indicator 5.1). This engagement is also reflected by country leaders, with a record 60% of 194 countries focusing their attention on the links between climate change and health in the 2021 UN General Debate, and with 86% of national updated or new NDCs making references to health (indicator 5.4). At the city level, local authorities are progressively identifying risks of climate change on the health of their populations (indicator 2.1.3), a first step to delivering a tailored response that strengthens local health systems. Although the health sector is responsible for 5·2% of all global emissions (indicator 3.6), it has shown impressive climate leadership, and 60 countries had committed to transitioning to climate-resilient and/or low-carbon or net-zero carbon health systems as part of the COP26 Health Programme, as of July, 2022. Signs of change are also emerging in the energy sector. Although total clean energy generation remains grossly insufficient, record high levels were reached in 2020 (indicator 3.1). Zero-carbon sources accounted for 80% of investment in electricity generation in 2021 (indicator 4.2.1), and renewable energies have reached cost parity with fossil fuel energies. As some of the highest emitting countries attempt to cut their dependence on oil and gas in response to the war in Ukraine and soaring energy prices, many are focusing on increasing renewable energy generation, raising hopes for a health-centred response. However, increased awareness and commitments should be urgently translated into action for hope to turn into reality. A CALL TO ACTION: After 30 years of UNFCCC negotiations, the Lancet Countdown indicators show that countries and companies continue to make choices that threaten the health and survival of people in every part of the world. As countries devise ways to recover from the coexisting crises, the evidence is unequivocal. At this critical juncture, an immediate, health-centred response can still secure a future in which world populations can not only survive, but thrive.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/130175Data sources: Bielefeld Academic Search Engine (BASE)Tampere University: TrepoArticle . 2022Full-Text: https://trepo.tuni.fi/handle/10024/153208Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyTrepo - Institutional Repository of Tampere UniversityArticle . 2022 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere UniversityUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(22)01540-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 568 citations 568 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/130175Data sources: Bielefeld Academic Search Engine (BASE)Tampere University: TrepoArticle . 2022Full-Text: https://trepo.tuni.fi/handle/10024/153208Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyTrepo - Institutional Repository of Tampere UniversityArticle . 2022 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere UniversityUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(22)01540-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Francesco Sasso; Jonathan Chambers; Martin K. Patel;Energy efficiency in buildings is a key objective of the European energy strategy. To address the limited knowledge of the thermal performance of the non-domestic building stocks, this paper presents a bottom-up, physics-based, archetypal model derived from a large building stock database and physical characteristics from 2170 building energy performance certificates in Switzerland. The model was validated by measured energy consumption data and national statistics. Results highlight the potential for energy retrofit : most of the stock is still heated with fossil fuels (67% of the total heated area) and 40% of the total envelope surface has a poor thermal performance associated with the period before 1980. We estimate national final energy demand for heating of the office building stock (11.3 PJ/year) and present detailed breakdown of energy by thermal loss element. Significant differences were found between archetypes related to urban settings (specific demand 50% higher in rural than in urban contexts) and age of the buildings (56% of the total demand is due to buildings constructed before 1970). The physical model highlights the impact of architectural design characteristics such as building compactness and glazed surface ratios on thermal performance. The model represents an important step for studies on optimal thermal retrofit pathways.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Chambers, Jonathan; Zuberi, Muhammad Jibran Shahzad; Streicher, Kai Nino; Patel, Martin Kumar;Abstract Decarbonising energy used for space heating and hot water is critical for reaching emission targets. Modelling of thermal energy decarbonisation becomes increasingly complex as additional technology options are included. Spatial aspects become increasingly important when considering heat transport, for example using district heating. This study develops a model for heating energy decarbonisation that makes use of a techno-economic model applied to a large geographic area (Western Switzerland) at high spatial resolution. Global sensitivity analysis is applied to quantify the variance characteristics of the model. Heating energy services provided by retrofits, decentralised heat pumps, and thermal networks are considered. Final energy demand reductions ranges of 70–80% and emissions reductions of 90% were found with levelized costs of providing the heat service of 0.14–0.22CHF/kWh. High sensitivities were found with respect to efficiency parameters (retrofit potentials and seasonal performance factors). The spatial distribution of costs and sensitivities was shown to be highly variable, with a strong correlation with building density. This raises important questions, notably on equitable distribution of energy transition costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:Elsevier BV Streicher, Kai Nino; Mennel, Stefan; Chambers, Jonathan; Parra Mendoza, David; Patel, Martin;Abstract In this study we present a method for the assessment of the economic potential of deep energy retrofit packages for a national building stock, based on three main economic assessment approaches: 1) full investment cost and energy savings (approach FULL), 2) an approach only considering the cost of energy efficiency improvement and the related energy savings (approach IMPROVEMENT) and 3) an approach which is in line with the IMPROVEMENT approach but additionally assigns a residual value to each building element (approach DEPRECIATION). These three economic assessment approaches allow to assess the cost-effectiveness of large-scale retrofit packages according to different strategies, i.e. profit-oriented in the case of FULL, retrofitting only at end of lifetime in the case of IMPROVEMENT and pursuing a balance between environmental/energy and economic aspects in the case of DEPRECIATION. A case study for Switzerland shows that deep energy retrofit packages offer a technical energy saving potential of 55–86% and a technical greenhouse gas abatement potential of 50% to 80% (compared to current levels). The different approaches result in economic energy saving potentials of 3% (FULL), 14% (DEPRECIATION) and 50% (IMPROVEMENT). The respective marginal levelized costs for reaching a 50% reduction in final energy demand amount to 120 CHF/MWh (FULL), 40 CHF/MWh (DEPRECIATION) and 1 CHF/MWh (IMPROVEMENT). The results show an economic greenhouse gas saving potential of 1% (FULL), 13% (DEPRECIATION) and 65% (IMPROVEMENT) with respective marginal levelized costs for a 50% reduction of 350 CHF/t CO2eq., 90 CHF/t CO2eq. and −40 CHF/t CO2eq. The findings indicate that, without subsidies or with rather low subsidies, large-scale deep energy retrofit is economically viable only if it is part of the regular refurbishment cycle (IMPROVEMENT approach). Since full alignment with regular refurbishment cycle is not practically possible across the building stock, policy design is recommended to rather follow the DEPRECIATION approach according to which a subsidy of 40 CHF/MWhsaved (or 90 CHF/ t CO2, avoided) would be needed in order to achieve a 50% final energy and greenhouse gas emission reduction in the building stock.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.109870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.109870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Elsevier BV M. Jibran S. Zuberi; Frédéric Bless; Jonathan Chambers; Cordin Arpagaus; Stefan S. Bertsch; Martin K. Patel;Abstract Typically, 70% of the total final energy demand in the industry sector is used for process heat. A substantial share of this energy could be provided by excess heat recovery. This study evaluates the techno-economic excess heat recovery potential in the Swiss industry through exergy and energy analysis and provides an overview of the spatial distribution of the potential by temperature level. The specific costs and payback periods of excess heat recovery are analyzed by conventional and new measures, as well as the overall costs of sector-wide excess heat recovery. The overall mean energy and exergy efficiencies of the Swiss industry sector are estimated to be 61% and 27%, respectively. The total amount of potentially recoverable excess heat is estimated at 14 PJ per year, i.e. 12% of the total final energy and 24% of the total process heat demand of Swiss industry in 2016. However, the economic potential amounts to only 5% and 10% if a payback period of 3 and 4 years is assumed, respectively. Long payback times of heat recovery measures and a high percentage of low-quality and small heat streams were the most important barriers to energy efficiency improvement in Swiss industry. Furthermore, 30–40% of the steam demand in Swiss industry could be provided from excess heat in an economically viable manner, if all excess heat available at temperatures below 80 °C was utilized for steam generation using low pressure evaporation, vapor compression, and high temperature heat pump techniques. The results and the data provided in this study can be adapted to other regions of the world and can serve as a base for conducting more comprehensive analyses and formulating more effective policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.06.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.06.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 SwitzerlandPublisher:Elsevier BV Authors: Jonathan Chambers; Kapil Narula; Matthias Sulzer; Martin K. Patel;Abstract In its 2016 Heating and Cooling Strategy, the European Commission (EC) highlighted the strategic importance of heating demand for the energy demand reduction, and further noted that District Heat Networks (DHN) can play an important role in decarbonising this sector. This study applied a thermal atlas approach to map the potential for district heat networks in Switzerland. It extended existing methods with a novel approach to estimating linear thermal demand density in DHN at a national scale. DHN potential for current-generation high temperature networks as well as cutting-edge low temperature networks were compared for current building space heating and hot water demand as well as for two demand reduction scenarios. The method was tested by comparing its results to those of a local engineering study conducted for a Swiss municipality (Brig-Glis). The potential percentage of demand supplied by high temperature DHN was shown to decrease from 66% to 41% with energy saving while the potential for low temperature systems increased significantly from 2.1% to 42%. The percentage of heat demand covered by heat networks decreases less than the percentage of buildings covered, reflecting the strength of heat networks for supplying large fractions of thermal demand in geographically confined areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 29 Nov 2022 Austria, United Kingdom, Spain, Switzerland, Spain, Sweden, Australia, United Kingdom, United Kingdom, Spain, Spain, Germany, AustraliaPublisher:Elsevier BV Funded by:EC | EARLY-ADAPT, WT | Future of Animal-sourced ..., EC | FirEUrisk +5 projectsEC| EARLY-ADAPT ,WT| Future of Animal-sourced Foods (FOAF) ,EC| FirEUrisk ,EC| CATALYSE ,WT| Lancet Countdown: Tracking Progress on Health and Climate Change ,EC| EXHAUSTION ,AKA| Health effects and associated socio-economic costs of increasing temperatures and wildfires - A global assessment ,EC| IDAlertVan Daalen, Kim R; Romanello, Marina; Rocklöv, Joacim; Semenza, Jan C; Tonne, Cathryn; Markandya, Anil; Dasandi, Niheer; Jankin, Slava; Achebak, Hicham; Ballester, Joan; Bechara, Hannah; Callaghan, Max W; Chambers, Jonathan; Dasgupta, Shouro; Drummond, Paul; Farooq, Zia; Gasparyan, Olga; Gonzalez-Reviriego, Nube; Hamilton, Ian; Hänninen, Risto; Kazmierczak, Aleksandra; Kendrovski, Vladimir; Kennard, Harry; Kiesewetter, Gregor; Lloyd, Simon J; Lotto Batista, Martin; Martinez-Urtaza, Jaime; Milà, Carles; Minx, Jan C; Nieuwenhuijsen, Mark; Palamarchuk, Julia; Quijal-Zamorano, Marcos; Robinson, Elizabeth JZ; Scamman, Daniel; Schmoll, Oliver; Sewe, Maquins Odhiambo; Sjödin, Henrik; Sofiev, Mikhail; Solaraju-Murali, Balakrishnan; Springmann, Marco; Triñanes, Joaquin; Anto, Josep M; Nilsson, Maria; Lowe, Rachel;The work of MSo and RH has been performed within the scope of H2020 project EXHAUSTION (grant number 820655) and Academy of Finland HEATCOST (grant number 334798). JMA acknowledges support from the Spanish Ministry of Science and Innovation and State Research Agency through the Centro de Excelencia Severo Ochoa 2019–23 programme (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA programme. JB acknowledges funding from the Ministry of Science and Innovation (MCIU) under grant agreement number RYC2018-025446-I (programme Ramón y Cajal). The computations of the mechanistic dengue-models (MOS and HS) were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at HPC2N. JR has been awarded a Chair in Artificial Intelligence in the Research of Infectious Diseases Impacted by Climate Change provided by the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship endowed by the Federal Ministry of Education and Research. HA, MQ-Z, and SJL were supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No 865564 (European Research Council Consolidator Grant EARLY-ADAPT). JP was supported by Academy of Finland projects PS4A and ALL-Impress. The Lancet Countdown in Europe received invaluable support from Shuzhou Yuan, Ran Zhang, Krishnamoorthy Manohara, and Reed Garvin (Data Science Lab, Hertie School, Germany), Tom de Groeve and Peter Salamon (European Commission), and Raúl Fernando Méndez Turrubiates (ISGlobal, Barcelona, Spain). We also thank Wenjia Cai, Shihui Zhang, and Jiyao Zhao (Department of Earth System Science, Tsinghua University, Beijing, China) for their technical advice.
ACU Research Bank arrow_drop_down Australian Catholic University: ACU Research BankArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedData sources: UPCommons. Portal del coneixement obert de la UPCPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedThe Lancet Public HealthArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2468-2667(22)00197-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 40visibility views 40 download downloads 54 Powered bymore_vert ACU Research Bank arrow_drop_down Australian Catholic University: ACU Research BankArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedData sources: UPCommons. Portal del coneixement obert de la UPCPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedThe Lancet Public HealthArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMACO (Monografies Acadèmiques Catalanes en Obert)Article . 2025License: CC BYData sources: MACO (Monografies Acadèmiques Catalanes en Obert)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2468-2667(22)00197-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Chambers, Jonathan;Network analysis finds natural applications in geospatial information systems for a range of applications, notably for thermal grids, which are important for decarbonising thermal energy supply. These analyses are required to operate over a large range of geographic scales. This is a challenge for existing approaches, which face computational scaling challenges with the large datasets now available, such as building and road network data for an entire country. This work presents a system for geospatial modelling of thermal networks including their routing through the existing road network and calculation of flows through the network. This is in contrast to previous thermal network analysis work which could only work with simplified aggregated data.•We apply multi-level spatial clustering which enables parallelisation of work sets.•We develop algorithms and data processing pipelines for calculating network routing.•We use cluster-level caching to enable rapid evaluation of model variants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mex.2020.101072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mex.2020.101072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:IOP Publishing Authors: Selin Yilmaz; Jonathan Chambers; Martin Kumar Patel; Xiang Li;Abstract The large-scale deployment of smart meters has led to significant amount of electricity demand data available, driving it into the realm of Big Data. It is a major challenge to exploit this Big Data in order to characterise electricity use patterns and to support demand response policies. In this paper, we perform a featured-based cluster analysis on nine building archetypes (hospitals, schools, offices, hotels, flats, houses etc.) to identify electricity use patterns. Then, four metrics are developed, which are entropy, load curviness, peak intensity and index of hourly ramp rates, to measure these archetypes’ suitability to be involved in demand response schemes. A significant difference in electricity use patterns between the archetypes is found, as well as among the seasons and days of the week. We present a number of metrics for each archetype to establish which type of archetype should be prioritised for demand response programmes in terms of peak management, ramp rates as well as demand flexibility. A key finding of our study is that households offer more demand flexibility than the non-domestic sector and should therefore be incentivized to participate in dynamic electricity tariffs.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2042/1/012021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2042/1/012021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:Elsevier BV Jonathan Chambers; S. Zuberi; M. Jibran; Kapil Narula; Martin K. Patel;Industrial Excess Heat (IEH) is an underutilised resource which could contribute to decarbonising the heat supply. It is particularly well suited for supplying district heat networks (DHN), thereby enabling the capture and distribution of excess energy from industries and incineration plants. However, as heat cannot be readily transported over long distances, there is a need to analyse the balance of supply and demand over time taking into account the geospatial constraints placed on the linking of IEH supplies and DHN demands. This work presents an analysis of the potential for the supply of DHN systems using high and low network temperatures by IEH in Switzerland. A spatial clustering method is used to link potential supplies and demands, and monthly supply and demand curves are used to calculate the potential for IEH supply subject to spatiotemporal constraints. A further analysis deals with the technical potential for seasonal storage to shift surplus IEH energy from summer to winter. A total resource of 12TWh/y of IEH was found, but spatial and temporal constraints limited its utilisation to between 7.7TWh/y and 10.5TWh/y depending the scenario considered. 17.4% of total heat demand could be supplied by IEH using low temperature DHN and seasonal storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Peru, Singapore, France, United Kingdom, Denmark, Finland, Denmark, France, Switzerland, Peru, United Kingdom, GermanyPublisher:Elsevier BV Funded by:UKRI | UK Centre for Research on..., EC | EXHAUSTION, AKA | Health effects and associ... +5 projectsUKRI| UK Centre for Research on Energy Demand ,EC| EXHAUSTION ,AKA| Health effects and associated socio-economic costs of increasing temperatures and wildfires - A global assessment ,UKRI| Developing integrated environmental indicators for sustainable global food production and trade ,WT| Complex Urban Systems for Sustainability and Health (London Hub) ,WT| Lancet Countdown: Tracking Progress on Health and Climate Change ,EC| FirEUrisk ,WT| Sustainable and Healthy Food Systems (SHEFS)Romanello, Marina; Di Napoli, Claudia; Drummond, Paul; Green, Carole; Kennard, Harry; Lampard, Pete; Scamman, Daniel; Arnell, Nigel; Ayeb-Karlsson, Sonja; Berrang-ford, Lea; Belesova, Kristine; Bowen, Kathryn J.; Cai, Wenjia; Callaghan, Max W.; Campbell-Lendrum, Diarmid; Chambers, Jonathan; van Daalen, Kim R; Dalin, Carole; Dasandi, Niheer; Dasgupta, Shouro; Davies, Michael; Dominguez-Salas, Paula; Dubrow, Robert; Ebi, Kristie L.; Eckelman, Matthew; Ekins, Paul; Escobar, Luis E.; Georgeson, Lucien; Graham, Hilary; Gunther, Samuel H.; Hamilton, Ian; Hang, Yun; Hänninen, Risto; Hartinger, Stella; He, Kehan; Hess, Jeremy; Hsu, Shih Che; Jankin, Slava; Jamart, Louis; Jay, Ollie; Kelman, Ilan; Kiesewetter, Gregor; Kinney, Patrick L.; Kjellstrom, Tord; Kniveton, Dominic; Lee, Jason K.W.; Lemke, Bruno; Liu, Yang; Liu, Zhao; Lott, Melissa; Lotto Batista, Martin; Lowe, Rachel; MacGuire, Frances; Sewe, Maquins Odhiambo; Martinez-Urtaza, Jaime; Maslin, Mark; McAllister, Lucy; McGushin, Alice; McMichael, Celia; Mi, Zhifu; Milner, James; Minor, Kelton; Minx, Jan C.; Mohajeri, Nahid; Moradi-Lakeh, Maziar; Morrissey, Karyn; Munzert, Simon; Murray, Kris A.; Neville, Tara; Nilsson, Maria; Obradovich, Nick; O'Hare, Megan B; Oreszczyn, Tadj; Otto, Matthias; Owfi, Fereidoon; Pearman, Olivia; Rabbaniha, Mahnaz; Robinson, Elizabeth; Rocklöv, Joacim; Salas, Renee N.; Semenza, Jan, C.; Sherman, Jodi; Shi, Liuhua; Shumake-Guillemot, Joy; Silbert, Grant; Sofiev, Mikhail; Springmann, Marco; Stowell, Jennifer; Tabatabaei, Meisam; Taylor, Jonathon; Trinanes, Joaquin; Wagner, Fabian; Wilkinson, Paul; Winning, Matthew; Yglesias-González, Marisol; Zhang, Shihui; Gong, Peng; Montgomery, Hugh; Costello, Anthony;pmid: 36306815
pmc: PMC7616806
The 2022 report of the Lancet Countdown is published as the world confronts profound and concurrent systemic shocks. Countries and health systems continue to contend with the health, social, and economic impacts of the COVID-19 pandemic, while Russia’s invasion of Ukraine and a persistent fossil fuel overdependence has pushed the world into global energy and cost-of-living crises. As these crises unfold, climate change escalates unabated. Its worsening impacts are increasingly affecting the foundations of human health and wellbeing, exacerbating the vulnerability of the world’s populations to concurrent health threats. During 2021 and 2022, extreme weather events caused devastation across every continent, adding further pressure to health services already grappling with the impacts of the COVID-19 pandemic. Floods in Australia, Brazil, China, western Europe, Malaysia, Pakistan, South Africa, and South Sudan caused thousands of deaths, displaced hundreds of thousands of people, and caused billions of dollars in economic losses. Wildfires caused devastation in Canada, the USA, Greece, Algeria, Italy, Spain, and Türkiye, and record temperatures were recorded in many countries, including Australia, Canada, India, Italy, Oman, Türkiye, Pakistan, and the UK. With advancements in the science of detection and attribution studies, the influence of climate change over many events has now been quantified. Because of the rapidly increasing temperatures, vulnerable populations (adults older than 65 years, and children younger than one year of age) were exposed to 3·7 billion more heatwave days in 2021 than annually in 1986–2005 (indicator 1.1.2), and heat-related deaths increased by 68% between 2000–04 and 2017–21 (indicator 1.1.5), a death toll that was significantly exacerbated by the confluence of the COVID-19 pandemic. Simultaneously, the changing climate is affecting the spread of infectious diseases, putting populations at higher risk of emerging diseases and co-epidemics. Coastal waters are becoming more suitable for the transmission of Vibrio pathogens; the number of months suitable for malaria transmission increased by 31·3% in the highland areas of the Americas and 13·8% in the highland areas of Africa from 1951–60 to 2012–21, and the likelihood of dengue transmission rose by 12% in the same period (indicator 1.3.1). The coexistence of dengue outbreaks with the COVID-19 pandemic led to aggravated pressure on health systems, misdiagnosis, and difficulties in management of both diseases in many regions of South America, Asia, and Africa. The economic losses associated with climate change impacts are also increasing pressure on families and economies already challenged with the synergistic effects of the COVID-19 pandemic and the international cost-of-living and energy crises, further undermining the socioeconomic determinants that good health depends on. Heat exposure led to 470 billion potential labour hours lost globally in 2021 (indicator 1.1.4), with potential income losses equivalent to 0·72% of the global economic output, increasing to 5·6% of the GDP in low Human Development Index (HDI) countries, where workers are most vulnerable to the effects of financial fluctuations (indicator 4.1.3). Meanwhile, extreme weather events caused damage worth US$253 billion in 2021, particularly burdening people in low HDI countries in which almost none of the losses were insured (indicator 4.1.1). Through multiple and interconnected pathways, every dimension of food security is being affected by climate change, aggravating the impacts of other coexisting crises. The higher temperatures threaten crop yields directly, with the growth seasons of maize on average 9 days shorter in 2020, and the growth seasons of winter wheat and spring wheat 6 days shorter than for 1981–2010 globally (indicator 1.4). The threat to crop yields adds to the rising impact of extreme weather on supply chains, socioeconomic pressures, and the risk of infectious disease transmission, undermining food availability, access, stability, and utilisation. New analysis suggests that extreme heat was associated with 98 million more people reporting moderate to severe food insecurity in 2020 than annually in 1981–2010, in 103 countries analysed (indicator 1.4). The increasingly extreme weather worsens the stability of global food systems, acting in synergy with other concurrent crises to reverse progress towards hunger eradication. Indeed, the prevalence of undernourishment increased during the COVID-19 pandemic, and up to 161 million more people faced hunger during the COVID-19 pandemic in 2020 than in 2019. This situation is now worsened by Russia’s invasion of Ukraine and the energy and cost-of-living crises, with impacts on international agricultural production and supply chains threatening to result in 13 million additional people facing undernutrition in 2022. A DEBILITATED FIRST LINE OF DEFENCE: With the worsening health impacts of climate change compounding other coexisting crises, populations worldwide increasingly rely on health systems as their first line of defence. However, just as the need for healthcare rises, health systems worldwide are debilitated by the effects of the COVID-19 pandemic and the energy and cost-of-living crises. Urgent action is therefore needed to strengthen health-system resilience and to prevent a rapidly escalating loss of lives and to prevent suffering in a changing climate. However, only 48 (51%) of 95 countries reported having assessed their climate change adaptation needs (indicator 2.1.1) and, even after the profound impacts of COVID-19, only 60 (63%) countries reported a high to very high implementation status for health emergency management in 2021 (indicator 2.2.4). The scarcity of proactive adaptation is shown in the response to extreme heat. Despite the local cooling and overall health benefits of urban greenspaces, only 277 (27%) of 1038 global urban centres were at least moderately green in 2021 (indicator 2.2.3), and the number of households with air conditioning increased by 66% from 2000 to 2020, a maladaptive response that worsens the energy crisis and further increases urban heat, air pollution, and greenhouse gas emissions. As converging crises further threaten the world’s life-supporting systems, rapid, decisive, and coherent intersectoral action is essential to protect human health from the hazards of the rapidly changing climate. HEALTH AT THE MERCY OF FOSSIL FUELS: The year 2022 marks the 30th anniversary of the signing of the UN Framework Convention on Climate Change, in which countries agreed to prevent dangerous anthropogenic climate change and its deleterious effects on human health and welfare. However, little meaningful action has since followed. The carbon intensity of the global energy system has decreased by less than 1% since the UNFCCC was established, and global electricity generation is still dominated by fossil fuels, with renewable energy contributing to only 8·2% of the global total (indicator 3.1). Simultaneously, the total energy demand has risen by 59%, increasing energy-related emissions to a historical high in 2021. Current policies put the world on track to a catastrophic 2·7°C increase by the end of the century. Even with the commitments that countries set in the Nationally Determined Contributions (NDCs) updated up until November 2021, global emissions could be 13·7% above 2010 levels by 2030—far from the 43% decrease from current levels required to meet Paris Agreement goals and keep temperatures within the limits of adaptation. Fossil fuel dependence is not only undermining global health through increased climate change impacts, but also affects human health and wellbeing directly, through volatile and unpredictable fossil fuel markets, frail supply chains, and geopolitical conflicts. As a result, millions of people do not have access to the energy needed to keep their homes at healthy temperatures, preserve food and medication, and meet the seventh Sustainable Development Goal (to ensure access to affordable, reliable, sustainable, and modern energy for all). Without sufficient support, access to clean energy has been particularly slow in low HDI countries, and only 1·4% of their electricity came from modern renewables (mostly wind and solar power) in 2020 (indicator 3.1). An estimated 59% of healthcare facilities in low and middle-income countries still do not have access to the reliable electricity needed to provide basic care. Meanwhile, biomass accounts for as much as 31% of the energy consumed in the domestic sector globally, mostly from traditional sources—a proportion that increases to 96% in low HDI countries (indicator 3.2). The associated burden of disease is substantial, with the air in people’s homes exceeding WHO guidelines for safe concentrations of small particulate air pollution (PM(2·5)) in 2020 by 30-fold on average in the 62 countries assessed (indicator 3.2). After 6 years of improvement, the number of people without access to electricity increased in 2020 as a result of the socioeconomic pressures of the COVID-19 pandemic. The current energy and cost-of-living crises now threaten to reverse progress toward affordable, reliable, and sustainable energy, further undermining the socioeconomic determinants of health. Simultaneously, oil and gas companies are registering record profits, while their production strategies continue to undermine people’s lives and wellbeing. An analysis of the production strategies of 15 of the world’s largest oil and gas companies, as of February 2022, revealed they exceed their share of emissions consistent with 1·5°C of global heating (indicator 4.2.6) by 37% in 2030 and 103% in 2040, continuing to undermine efforts to deliver a low carbon, healthy, liveable future. Aggravating this situation even further, governments continue to incentivise fossil fuel production and consumption: 69 (80%) of 86 countries reviewed had net-negative carbon prices (ie, provided a net subsidy to fossil fuels) for a net total of US$400 billion in 2019, allocating amounts often comparable with or even exceeding their total health budgets (indicator 4.2.4). Simultaneously, wealthier countries failed to meet their commitment of mobilising the considerably lower sum of $100 billion annually by 2020 as agreed at the 2009 Copenhagen Accord to support climate action in “developing countries”, and climate efforts are being undercut by a profound scarcity of funding (indicator 2.1.1). The impacts of climate change on global economies, together with the recession triggered by COVID-19 and worsened by geopolitical instability, could paradoxically further reduce the willingness of countries to allocate the funds needed to enable a just climate transition. A HEALTH-CENTRED RESPONSE FOR A THRIVING FUTURE: The world is at a critical juncture. With countries facing concurrent crises, the implementation of long-term emissions-reduction policies risks being deflected or defeated by challenges wrongly perceived as more immediate. Addressing each of the concurrent crises in isolation risks alleviating one, while worsening another. Such a situation is emerging from the response to COVID-19, which has so far has not delivered the green recovery that the health community proposed, and, on the contrary, is aggravating climate change-related health risks. Less than one third of $3·11 trillion allocated to COVID-19 economic recovery is likely to reduce greenhouse gas emissions or air pollution, with the net effect likely to increase emissions. The COVID-19 pandemic affected climate action at the city level, and 239 (30%) of 798 cities reported that COVID-19 reduced financing available for climate action (indicator 2.1.3). As countries search for alternatives to Russian oil and gas, many continue to favour the burning of fossil fuels, with some even turning back to coal. Shifts in global energy supplies threaten to increase fossil fuel production. Even if implemented as a temporary transition, these responses could reverse progress on air quality improvement, irreversibly push the world off track from meeting the commitments set out in the Paris Agreement, and guarantee a future of accelerated climate change that threatens human survival. On the contrary, in this pivotal moment, a health-centred response to the current crises would still provide the opportunity for a low-carbon, resilient future, which not only avoids the health harms of accelerated climate change, but also delivers improved health and wellbeing through the associated co-benefits of climate action. Such response would see countries promptly shifting away from fossil fuels, reducing their dependence on fragile international oil and gas markets, and accelerating a just transition to clean energy sources. A health-centred response would reduce the likelihood of the most catastrophic climate change impacts, while improving energy security, creating an opportunity for economic recovery, and offering immediate health benefits. Improvements in air quality would help to prevent the 1·2 million deaths resulting from exposure to fossil fuel-derived ambient PM(2·5) in 2020 alone (indicator 3.3), and a health-centred energy transition would enhance low-carbon travel and increase urban green spaces, promoting physical activity, and improving physical and mental health. In the food sector, an accelerated transition to balanced and more plant-based diets would not only help reduce the 55% of agricultural sector emissions coming from red meat and milk production (indicator 3.5.1), but also prevent up to 11·5 million diet-related deaths annually (indicator 3.5.2), and substantially reduce the risk of zoonotic diseases. These health-focused shifts would reduce the burden of communicable and non-communicable diseases, reducing the strain on overwhelmed health-care providers. Importantly, accelerating climate change adaptation would lead to more robust health systems, minimising the negative impacts of future infectious disease outbreaks and geopolitical conflicts, and restoring the first line of defence of global populations. EMERGING GLIMMERS OF HOPE: Despite decades of insufficient action, emerging, albeit few, signs of change provide some hope that a health-centred response might be starting to emerge. Individual engagement with the health dimensions of climate change, essential to drive and enable an accelerated response, increased from 2020 to 2021 (indicator 5.2), and coverage of health and climate change in the media reached a new record high in 2021, with a 27% increase from 2020 (indicator 5.1). This engagement is also reflected by country leaders, with a record 60% of 194 countries focusing their attention on the links between climate change and health in the 2021 UN General Debate, and with 86% of national updated or new NDCs making references to health (indicator 5.4). At the city level, local authorities are progressively identifying risks of climate change on the health of their populations (indicator 2.1.3), a first step to delivering a tailored response that strengthens local health systems. Although the health sector is responsible for 5·2% of all global emissions (indicator 3.6), it has shown impressive climate leadership, and 60 countries had committed to transitioning to climate-resilient and/or low-carbon or net-zero carbon health systems as part of the COP26 Health Programme, as of July, 2022. Signs of change are also emerging in the energy sector. Although total clean energy generation remains grossly insufficient, record high levels were reached in 2020 (indicator 3.1). Zero-carbon sources accounted for 80% of investment in electricity generation in 2021 (indicator 4.2.1), and renewable energies have reached cost parity with fossil fuel energies. As some of the highest emitting countries attempt to cut their dependence on oil and gas in response to the war in Ukraine and soaring energy prices, many are focusing on increasing renewable energy generation, raising hopes for a health-centred response. However, increased awareness and commitments should be urgently translated into action for hope to turn into reality. A CALL TO ACTION: After 30 years of UNFCCC negotiations, the Lancet Countdown indicators show that countries and companies continue to make choices that threaten the health and survival of people in every part of the world. As countries devise ways to recover from the coexisting crises, the evidence is unequivocal. At this critical juncture, an immediate, health-centred response can still secure a future in which world populations can not only survive, but thrive.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/130175Data sources: Bielefeld Academic Search Engine (BASE)Tampere University: TrepoArticle . 2022Full-Text: https://trepo.tuni.fi/handle/10024/153208Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyTrepo - Institutional Repository of Tampere UniversityArticle . 2022 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere UniversityUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(22)01540-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 568 citations 568 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/130175Data sources: Bielefeld Academic Search Engine (BASE)Tampere University: TrepoArticle . 2022Full-Text: https://trepo.tuni.fi/handle/10024/153208Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyTrepo - Institutional Repository of Tampere UniversityArticle . 2022 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere UniversityUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0140-6736(22)01540-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Francesco Sasso; Jonathan Chambers; Martin K. Patel;Energy efficiency in buildings is a key objective of the European energy strategy. To address the limited knowledge of the thermal performance of the non-domestic building stocks, this paper presents a bottom-up, physics-based, archetypal model derived from a large building stock database and physical characteristics from 2170 building energy performance certificates in Switzerland. The model was validated by measured energy consumption data and national statistics. Results highlight the potential for energy retrofit : most of the stock is still heated with fossil fuels (67% of the total heated area) and 40% of the total envelope surface has a poor thermal performance associated with the period before 1980. We estimate national final energy demand for heating of the office building stock (11.3 PJ/year) and present detailed breakdown of energy by thermal loss element. Significant differences were found between archetypes related to urban settings (specific demand 50% higher in rural than in urban contexts) and age of the buildings (56% of the total demand is due to buildings constructed before 1970). The physical model highlights the impact of architectural design characteristics such as building compactness and glazed surface ratios on thermal performance. The model represents an important step for studies on optimal thermal retrofit pathways.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Chambers, Jonathan; Zuberi, Muhammad Jibran Shahzad; Streicher, Kai Nino; Patel, Martin Kumar;Abstract Decarbonising energy used for space heating and hot water is critical for reaching emission targets. Modelling of thermal energy decarbonisation becomes increasingly complex as additional technology options are included. Spatial aspects become increasingly important when considering heat transport, for example using district heating. This study develops a model for heating energy decarbonisation that makes use of a techno-economic model applied to a large geographic area (Western Switzerland) at high spatial resolution. Global sensitivity analysis is applied to quantify the variance characteristics of the model. Heating energy services provided by retrofits, decentralised heat pumps, and thermal networks are considered. Final energy demand reductions ranges of 70–80% and emissions reductions of 90% were found with levelized costs of providing the heat service of 0.14–0.22CHF/kWh. High sensitivities were found with respect to efficiency parameters (retrofit potentials and seasonal performance factors). The spatial distribution of costs and sensitivities was shown to be highly variable, with a strong correlation with building density. This raises important questions, notably on equitable distribution of energy transition costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117592&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:Elsevier BV Streicher, Kai Nino; Mennel, Stefan; Chambers, Jonathan; Parra Mendoza, David; Patel, Martin;Abstract In this study we present a method for the assessment of the economic potential of deep energy retrofit packages for a national building stock, based on three main economic assessment approaches: 1) full investment cost and energy savings (approach FULL), 2) an approach only considering the cost of energy efficiency improvement and the related energy savings (approach IMPROVEMENT) and 3) an approach which is in line with the IMPROVEMENT approach but additionally assigns a residual value to each building element (approach DEPRECIATION). These three economic assessment approaches allow to assess the cost-effectiveness of large-scale retrofit packages according to different strategies, i.e. profit-oriented in the case of FULL, retrofitting only at end of lifetime in the case of IMPROVEMENT and pursuing a balance between environmental/energy and economic aspects in the case of DEPRECIATION. A case study for Switzerland shows that deep energy retrofit packages offer a technical energy saving potential of 55–86% and a technical greenhouse gas abatement potential of 50% to 80% (compared to current levels). The different approaches result in economic energy saving potentials of 3% (FULL), 14% (DEPRECIATION) and 50% (IMPROVEMENT). The respective marginal levelized costs for reaching a 50% reduction in final energy demand amount to 120 CHF/MWh (FULL), 40 CHF/MWh (DEPRECIATION) and 1 CHF/MWh (IMPROVEMENT). The results show an economic greenhouse gas saving potential of 1% (FULL), 13% (DEPRECIATION) and 65% (IMPROVEMENT) with respective marginal levelized costs for a 50% reduction of 350 CHF/t CO2eq., 90 CHF/t CO2eq. and −40 CHF/t CO2eq. The findings indicate that, without subsidies or with rather low subsidies, large-scale deep energy retrofit is economically viable only if it is part of the regular refurbishment cycle (IMPROVEMENT approach). Since full alignment with regular refurbishment cycle is not practically possible across the building stock, policy design is recommended to rather follow the DEPRECIATION approach according to which a subsidy of 40 CHF/MWhsaved (or 90 CHF/ t CO2, avoided) would be needed in order to achieve a 50% final energy and greenhouse gas emission reduction in the building stock.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.109870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2020.109870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Elsevier BV M. Jibran S. Zuberi; Frédéric Bless; Jonathan Chambers; Cordin Arpagaus; Stefan S. Bertsch; Martin K. Patel;Abstract Typically, 70% of the total final energy demand in the industry sector is used for process heat. A substantial share of this energy could be provided by excess heat recovery. This study evaluates the techno-economic excess heat recovery potential in the Swiss industry through exergy and energy analysis and provides an overview of the spatial distribution of the potential by temperature level. The specific costs and payback periods of excess heat recovery are analyzed by conventional and new measures, as well as the overall costs of sector-wide excess heat recovery. The overall mean energy and exergy efficiencies of the Swiss industry sector are estimated to be 61% and 27%, respectively. The total amount of potentially recoverable excess heat is estimated at 14 PJ per year, i.e. 12% of the total final energy and 24% of the total process heat demand of Swiss industry in 2016. However, the economic potential amounts to only 5% and 10% if a payback period of 3 and 4 years is assumed, respectively. Long payback times of heat recovery measures and a high percentage of low-quality and small heat streams were the most important barriers to energy efficiency improvement in Swiss industry. Furthermore, 30–40% of the steam demand in Swiss industry could be provided from excess heat in an economically viable manner, if all excess heat available at temperatures below 80 °C was utilized for steam generation using low pressure evaporation, vapor compression, and high temperature heat pump techniques. The results and the data provided in this study can be adapted to other regions of the world and can serve as a base for conducting more comprehensive analyses and formulating more effective policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.06.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.06.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu