- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Chile, Spain, Switzerland, United States, United States, Chile, Ireland, United States, Germany, Spain, BelgiumPublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa Rica ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?Mirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | PREEVENTS Track 2: Collab...NSF| PREEVENTS Track 2: Collaborative Research: Flash droughts: process, prediction, and the central role of vegetation in their evolution.Yao Zhang; Pierre Gentine; Xiangzhong Luo; Xu Lian; Yanlan Liu; Sha Zhou; A. M. Michalak; Wu Sun; Joshua B. Fisher; Shilong Piao; Trevor F. Keenan;pmid: 35985990
pmc: PMC9391480
AbstractWater availability plays a critical role in shaping terrestrial ecosystems, particularly in low- and mid-latitude regions. The sensitivity of vegetation growth to precipitation strongly regulates global vegetation dynamics and their responses to drought, yet sensitivity changes in response to climate change remain poorly understood. Here we use long-term satellite observations combined with a dynamic statistical learning approach to examine changes in the sensitivity of vegetation greenness to precipitation over the past four decades. We observe a robust increase in precipitation sensitivity (0.624% yr−1) for drylands, and a decrease (−0.618% yr−1) for wet regions. Using model simulations, we show that the contrasting trends between dry and wet regions are caused by elevated atmospheric CO2 (eCO2). eCO2 universally decreases the precipitation sensitivity by reducing leaf-level transpiration, particularly in wet regions. However, in drylands, this leaf-level transpiration reduction is overridden at the canopy scale by a large proportional increase in leaf area. The increased sensitivity for global drylands implies a potential decrease in ecosystem stability and greater impacts of droughts in these vulnerable ecosystems under continued global change.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/8wv793k0Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32631-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 143 citations 143 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/8wv793k0Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32631-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NSF | MSA: Dynamics of Chloroph..., NSF | Data CI Pilot: NCAR and N..., NSF | The Management and Operat...NSF| MSA: Dynamics of Chlorophyll Fluorescence and Its Relationship with Photosynthesis from Leaf to Continent: Theory Meets Data ,NSF| Data CI Pilot: NCAR and NEON Cyberinfrastructure Collaborations to Enable Convergence Research Linking the Atmospheric and Biological Sciences ,NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jiameng Lai; Linda M. J. Kooijmans; Wu Sun; Danica Lombardozzi; J. Elliott Campbell; Lianhong Gu; Yiqi Luo; Le Kuai; Ying Sun;pmid: 39415019
Terrestrial photosynthesis, or gross primary production (GPP), is the largest carbon flux in the biosphere, but its global magnitude and spatiotemporal dynamics remain uncertain1. The global annual mean GPP is historically thought to be around 120 PgC yr-1 (refs. 2-6), which is about 30-50 PgC yr-1 lower than GPP inferred from the oxygen-18 (18O) isotope7 and soil respiration8. This disparity is a source of uncertainty in predicting climate-carbon cycle feedbacks9,10. Here we infer GPP from carbonyl sulfide, an innovative tracer for CO2 diffusion from ambient air to leaf chloroplasts through stomata and mesophyll layers. We demonstrate that explicitly representing mesophyll diffusion is important for accurately quantifying the spatiotemporal dynamics of carbonyl sulfide uptake by plants. From the estimate of carbonyl sulfide uptake by plants, we infer a global contemporary GPP of 157 (±8.5) PgC yr-1, which is consistent with estimates from 18O (150-175 PgC yr-1) and soil respiration ( 149 - 23 + 29 PgC yr-1), but with an improved confidence level. Our global GPP is higher than satellite optical observation-driven estimates (120-140 PgC yr-1) that are used for Earth system model benchmarking. This difference predominantly occurs in the pan-tropical rainforests and is corroborated by ground measurements11, suggesting a more productive tropics than satellite-based GPP products indicated. As GPP is a primary determinant of terrestrial carbon sinks and may shape climate trajectories9,10, our findings lay a physiological foundation on which the understanding and prediction of carbon-climate feedbacks can be advanced.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08050-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08050-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Chile, Spain, Switzerland, United States, United States, Chile, Ireland, United States, Germany, Spain, BelgiumPublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa Rica ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?Mirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020Full-Text: http://oro.open.ac.uk/73137/1/73137.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2020License: CC BYFull-Text: https://escholarship.org/uc/item/2qm6h6tpData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Data sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2024License: CC BY NC NDFull-Text: https://doi.org/10.1111/gcb.15353Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | PREEVENTS Track 2: Collab...NSF| PREEVENTS Track 2: Collaborative Research: Flash droughts: process, prediction, and the central role of vegetation in their evolution.Yao Zhang; Pierre Gentine; Xiangzhong Luo; Xu Lian; Yanlan Liu; Sha Zhou; A. M. Michalak; Wu Sun; Joshua B. Fisher; Shilong Piao; Trevor F. Keenan;pmid: 35985990
pmc: PMC9391480
AbstractWater availability plays a critical role in shaping terrestrial ecosystems, particularly in low- and mid-latitude regions. The sensitivity of vegetation growth to precipitation strongly regulates global vegetation dynamics and their responses to drought, yet sensitivity changes in response to climate change remain poorly understood. Here we use long-term satellite observations combined with a dynamic statistical learning approach to examine changes in the sensitivity of vegetation greenness to precipitation over the past four decades. We observe a robust increase in precipitation sensitivity (0.624% yr−1) for drylands, and a decrease (−0.618% yr−1) for wet regions. Using model simulations, we show that the contrasting trends between dry and wet regions are caused by elevated atmospheric CO2 (eCO2). eCO2 universally decreases the precipitation sensitivity by reducing leaf-level transpiration, particularly in wet regions. However, in drylands, this leaf-level transpiration reduction is overridden at the canopy scale by a large proportional increase in leaf area. The increased sensitivity for global drylands implies a potential decrease in ecosystem stability and greater impacts of droughts in these vulnerable ecosystems under continued global change.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/8wv793k0Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32631-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 143 citations 143 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/8wv793k0Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-32631-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NSF | MSA: Dynamics of Chloroph..., NSF | Data CI Pilot: NCAR and N..., NSF | The Management and Operat...NSF| MSA: Dynamics of Chlorophyll Fluorescence and Its Relationship with Photosynthesis from Leaf to Continent: Theory Meets Data ,NSF| Data CI Pilot: NCAR and NEON Cyberinfrastructure Collaborations to Enable Convergence Research Linking the Atmospheric and Biological Sciences ,NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jiameng Lai; Linda M. J. Kooijmans; Wu Sun; Danica Lombardozzi; J. Elliott Campbell; Lianhong Gu; Yiqi Luo; Le Kuai; Ying Sun;pmid: 39415019
Terrestrial photosynthesis, or gross primary production (GPP), is the largest carbon flux in the biosphere, but its global magnitude and spatiotemporal dynamics remain uncertain1. The global annual mean GPP is historically thought to be around 120 PgC yr-1 (refs. 2-6), which is about 30-50 PgC yr-1 lower than GPP inferred from the oxygen-18 (18O) isotope7 and soil respiration8. This disparity is a source of uncertainty in predicting climate-carbon cycle feedbacks9,10. Here we infer GPP from carbonyl sulfide, an innovative tracer for CO2 diffusion from ambient air to leaf chloroplasts through stomata and mesophyll layers. We demonstrate that explicitly representing mesophyll diffusion is important for accurately quantifying the spatiotemporal dynamics of carbonyl sulfide uptake by plants. From the estimate of carbonyl sulfide uptake by plants, we infer a global contemporary GPP of 157 (±8.5) PgC yr-1, which is consistent with estimates from 18O (150-175 PgC yr-1) and soil respiration ( 149 - 23 + 29 PgC yr-1), but with an improved confidence level. Our global GPP is higher than satellite optical observation-driven estimates (120-140 PgC yr-1) that are used for Earth system model benchmarking. This difference predominantly occurs in the pan-tropical rainforests and is corroborated by ground measurements11, suggesting a more productive tropics than satellite-based GPP products indicated. As GPP is a primary determinant of terrestrial carbon sinks and may shape climate trajectories9,10, our findings lay a physiological foundation on which the understanding and prediction of carbon-climate feedbacks can be advanced.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08050-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08050-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu