- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Norway, Netherlands, Germany, United Kingdom, Netherlands, Germany, AustriaPublisher:Wiley Funded by:EC | DESIREEC| DESIREStadler, K; Wood, R.; Bulavskaya, T.; Sodersten, C.J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernandez, J.; Kuenen, J.; Bruckner, M.; Giljum, S.; Lutter, S.; Merciai, S.; Schmidt, J.H.; Theurl, M.C.; Plutzar, C.; Kastner, T.; Eisenmenger, N.; Erb, K; H.,; Koning, de, A.; Tukker, A.;doi: 10.1111/jiec.12715
handle: 1887/67827 , 1887/59451 , 11250/2578406
SummaryEnvironmentally extended multiregional input‐output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental‐Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:American Chemical Society (ACS) Gibran Vita; Narasimha D. Rao; Arkaitz Usubiaga-Liaño; Jihoon Min; Richard Wood;Supplementary Data File for: Vita, G., Rao, N. D., Usubiaga‐Liaño, A., Min, J. & Wood, R. Durable goods drive two-thirds of global households’ final energy footprints. Environ. Sci. Technol. (2021).
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental Science and TechnologyArticle . 2021Data sources: Open Universiteit research portalEnvironmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefOpen University of the Netherlands Research PortalArticle . 2021Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c03890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 53 Powered bymore_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental Science and TechnologyArticle . 2021Data sources: Open Universiteit research portalEnvironmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefOpen University of the Netherlands Research PortalArticle . 2021Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c03890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:EC | EMININNEC| EMININNAuthors: McDowall, WAS; Solano Rodriguez, B; Usubiaga, A; Acosta Fernández, J;Energy system optimization models (ESOMs) such as MARKAL/TIMES are used to support energy policy analysis worldwide. ESOMs cover the full life-cycle of fuels from extraction to end-use, including the associated direct emissions. Nevertheless, the life-cycle emissions of energy equipment and infrastructure are not modelled explicitly. This prevents analysis of questions relating to the relative importance of emissions associated with the build-up of infrastructure and other equipment required for decarbonization. We have soft-linked an environmentally-extended input-output (EEIO) model to a European TIMES Model (ETM-UCL) with the aim of addressing the following questions: - In what ways does the inclusion of indirect emissions change the optimal technology pathway for decarbonizing the European energy system? - How much does the present value of key low-carbon technologies change when indirect emissions are accounted for in a decarbonization scenario for Europe? We show that, although indirect emissions are a relatively small portion of overall power sector emissions (<10% in 2050), including them in the model leads to changes in the optimal power sector portfolio. Renewable energy technologies become relatively less attractive once indirect emissions are included within the optimization framework, and we quantify this effect, showing that it is not large. Changes to the relative attractiveness of specific renewable energy technologies are more pronounced than the reduction in attractiveness of renewable energy as a whole: in our main scenarios wind energy saw increased relative deployment in 2050 when indirect emissions are accounted for, since it displaced other technologies with higher life-cycle emissions (notably solar PV). Optimal cumulative installed capacity of PV in the EU 2050 is at least 7% lower when indirect emissions are included. We conclude that policy advice derived from ESOMs that focuses on the roles of specific technologies should ensure that it is robust to the possible effects of indirect emissions.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.09.132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.09.132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | DESIREEC| DESIREAuthors: Stadler, Konstantin; Wood, Richard; Bulavskaya, Tatyana; Södersten, Carl-Johan; +17 AuthorsStadler, Konstantin; Wood, Richard; Bulavskaya, Tatyana; Södersten, Carl-Johan; Simas, Moana; Schmidt, Sarah; Usubiaga, Arkaitz; Acosta-Fernández, José; Kuenen, Jeroen; Bruckner, Martin; Giljum, Stefan; Lutter, Stephan; Merciai, Stefano; Schmidt, Jannick H; Theurl, Michaela C; Plutzar, Christoph; Kastner, Thomas; Eisenmenger, Nina; Erb, Karl-Heinz; Koning, Arjan; Tukker, Arnold;EXIOBASE 3 provides a time series of environmentally extended multi-regional input‐output (EE MRIO) tables ranging from 1995 to a recent year for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUT) in a 163 industry by 200 products classification as the main building blocks. The tables are provided in current, basic prices (Million EUR). EXIOBASE 3 is the culmination of work in the FP7 DESIRE project and builds upon earlier work on EXIOBASE 2 in the FP7 CREEA project and EXIOBASE 1 of the FP6 EXIOPOL project. These databases are available at the official EXIOBASE website. A special issue of Journal of Industrial Ecology (Volume 22, Issue 3) describes the build process and some use cases of EXIOBASE 3. This includes the article by Stadler et. al 2018 describing the compilation of EXIOBASE 3. Further informations (data quality, updates, ...) can be found in the blog post describing a previous release at the Environmental Footprints webpage. Various concordance tables for the database are available here. For more (background) information see the Readme file. Previous EXIOBASE 3 Versions Some previous versions (3.7, 3.8) are also available on Zenodo. The even earlier public releases of the data (EXIOBASE v3.3 and v3.4) are available upon request. We recommend, however, to use the latest version due to major differences in water and land use accounts. End year The original EXIOBASE 3 data series ends 2011. In addition, we also have estimates based on a range of auxiliary data, but mainly trade and macro-economic data which go up to 2022 when including IMF expectations. A lot of care must be taken in use of this data. It is only partially suitable for analysing trends over time! The basic description of the process employed is in the relevant deliverable. As of v3.8 (doi: 10.5281/zenodo.4277368), the end years of real data points used are: 2015 energy, 2019 all GHG (non fuel, non-CO2 are nowcasted from 2018), 2013 material, 2011 most others, land, water. More details are available in the readme file. The EXIOBASE country disaggregated dataset EXIOBASE3rx provides land updates to 2015. Some work is going on to update the extensions, but other collaborative efforts are more than welcome. Bulk Download To allow the download of specific years we uploaded the data as zip archives per year and mrio type (industry by industry: ixi, and product by product: pxp). If you need all data, we recommend the excellent zenodo_get python utility for the download. After installing the tool, you can download the latest version with: zenodo_get 10.5281/zenodo.3583070 Previous versions are available by replacing the latest DOI with previous record numbers. Alternatively, you can contact Richard Wood or Konstantin Stadler for access to the Box data repository. IOT download and Pymrio integration If your are only interested in the IO tables, Pymrio (version >= 0.4.5) includes an automatic EXIOBASE 3 download function which works with the EXIOBASE upload on zenodo. The EXIOBASE 3 files can then be parsed and analysed directly. Nomenclature Archives: IOT_YYYY_ixi.zip - MRIO archive for Year YYYY in industry by industry format IOT_YYYY_ixi.zip - MRIO archive for Year YYYY in product by product format MRSUT_YYYY.zip - Multi-regional Supply-Use table for year YYYY SUT.zip - Domestic Supply Use for each country and year Content of IOT*.zip: (the archive can be read directly by pymrio without unpacking). The economic core is stored in the root of the archive, containing among others: Z.txt - flow/transactions matrix A.txt - matrix/inter-industry coefficients, (direct requirements matrix) Y.txt - final demand x.txt - gross/total output unit.txt - Units of the flow data The satellite accounts and characterized impacts are stored in the subfolder "satellite" and "impacts", both containing: F.txt - Factors of productions/stressors/impacts F_Y.txt - Stressors/impacts of the final demand, S.txt - Direct stressor/impact coefficients S_Y.txt - Stressor/impact coefficients of the final demand M.txt - MRIO extension multipliers (total requirement factors of consumption) D_cba.txt - Consumption based accounts per sector D_pba.txt - Production based accounts per sector D_cba_reg.txt - Consumption based accounts per region D_pba_reg.txt - Production based accounts per region D_imp_reg.txt - Import accounts per region D_exp_reg.txt - Export accounts per region unit.txt - Absolute units of the stressor and impacts The unit of the coefficient data M and S are given be the unit of the satellite account per unit of the economic core (e.g. kg CO2eq/Million Euro) Announcements We use the EXIOBASE google group for announcing new versions of the database. v3.8.1 is a minor update to v3.8 due to the existing of a few bugs (negative values) in the v3.8 release. As a result, the balancing has been redone in v3.8.1 with a different constraint set on maximum/minimum allowable values. In the process, the objective function was switched from a QP to Cross Entropy objective. In addition, IOT tables now include flow (F, Z) and coefficient matrices (A, S) as well as consumption based accounts (footprints, D_cba) and multipliers (M). IOT tables now also include characterized impacts (in the extension "impacts"). More information can be found in the included README file. {"references": ["Stadler et al. 2018 (10.1111/jiec.12715)"]}
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3583071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3583071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:UKRI | Euro-China Green Economy ...UKRI| Euro-China Green Economy theme: SINCERE (Sino-European Circular Economy and Resource Efficiency)Nechifor-Vostinaru, V; Calzadilla Rivera, A; Bleischwitz, R; Winning, M; Tian, X; Usubiaga, A;Abstract China is increasingly known for its ambitions towards an ‘ecological civilisation’ and a circular economy. Our article assesses the implications of an accelerated shift towards steel recycling in China. Given the relevance of steel for development worldwide as well as its environmental intensity, any such shift is likely to have implications for competitiveness in China and beyond. Recent findings suggest that China could take advantage of an increasing availability of obsolete steel scrap in the coming decades, moving towards more circular, and potentially greener, steel production. We assess such industrial restructuring from an economic perspective and address the competitiveness of China relative to other developing and industrialised regions. The analysis uses a novel global economy-wide modelling framework (ENGAGE-materials) to assess the aggregate and sector-level impacts of different scrap use options in China in the 2019–2030 time frame. The results show moderate GDP gains for China of cumulated USD 589 billion in GDP gains by 2030 despite a replacement of primary steel capacity. A more comprehensive industrial policy mix aimed at improved recycling practices and more adaptive downstream sectors could increase gains to USD 819 billion. The international implications are mixed, with losses for iron ore producers (Australia, Brazil and India) and gains for most developing countries benefiting from lower steel prices. Another result is an increasing demand for coal in electricity production if such a shift wouldn’t be aligned with an accelerated energy transition towards low carbon pathways. We discuss policy implications of such alignment, potential co-benefits, and a need for green international partnerships.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.worlddev.2019.104775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.worlddev.2019.104775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | EMININNEC| EMININNAuthors: Usubiaga, A; Acosta-Fernández, J; McDowall, W; Li, F;Replacing traditional technologies by renewables can lead to an increase of emissions during early diffusion stages if the emissions avoided during the use phase are exceeded by those associated with the deployment of new units. Based on historical developments and on counterfactual scenarios in which we assume that selected renewable technologies did not diffuse, we conclude that onshore and offshore wind energy have had a positive contribution to climate change mitigation since the beginning of their diffusion in EU27. In contrast, photovoltaic panels did not pay off from an environmental standpoint until very recently, since the benefits expected at the individual plant level were offset until 2013 by the CO2 emissions related to the construction and deployment of the next generation of panels. Considering the varied energy mixes and penetration rates of renewable energies in different areas, several countries can experience similar time gaps between the installation of the first renewable power plants and the moment in which the emissions from their infrastructure are offset. The analysis demonstrates that the time-profile of renewable energy emissions can be relevant for target-setting and detailed policy design, particularly when renewable energy strategies are pursued in concert with carbon pricing through cap-and-trade systems.
Energy Policy arrow_drop_down Publikationsserver des Wuppertal Instituts für Klima, Umwelt, EnergieArticle . 2017License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Policy arrow_drop_down Publikationsserver des Wuppertal Instituts für Klima, Umwelt, EnergieArticle . 2017License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2014 Austria, Netherlands, Germany, Germany, Norway, Germany, NetherlandsPublisher:MDPI AG Funded by:EC | CREEAEC| CREEAJosé Acosta-Fernández; Arjan de Koning; Stefan Giljum; Stefano Merciai; Stephan Lutter; Moana Simas; Konstantin Stadler; Arkaitz Usubiaga; Jan Weinzettel; Jan Weinzettel; Helmut Schütz; Jannick Højrup Schmidt; Olga Ivanova; Arnold Tukker; Arnold Tukker; Arnold Tukker; Tatyana Bulavskaya; Richard Wood; Jeroen Kuenen;doi: 10.3390/su7010138
handle: 1887/46366 , 11250/2364836
Measuring progress towards sustainable development requires appropriate frameworks and databases. The System of Environmental-Economic Accounts (SEEA) is undergoing continuous refinement with these objectives in mind. In SEEA, there is a need for databases to encompass the global dimension of societal metabolism. In this paper, we focus on the latest effort to construct a global multi-regional input−output database (EXIOBASE) with a focus on environmentally relevant activities. The database and its broader analytical framework allows for the as yet most detailed insight into the production-related impacts and “footprints” of our consumption. We explore the methods used to arrive at the database, and some key relationships extracted from the database.
Sustainability arrow_drop_down SustainabilityOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2071-1050/7/1/138/pdfData sources: Multidisciplinary Digital Publishing InstituteePubWU Institutional RepositoryArticle . 2014 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Leiden University Scholarly Publications RepositoryArticle . 2014Data sources: Leiden University Scholarly Publications RepositoryDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7010138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 345 citations 345 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2071-1050/7/1/138/pdfData sources: Multidisciplinary Digital Publishing InstituteePubWU Institutional RepositoryArticle . 2014 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Leiden University Scholarly Publications RepositoryArticle . 2014Data sources: Leiden University Scholarly Publications RepositoryDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7010138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, SpainPublisher:Elsevier BV Funded by:EC | LOCOMOTIONEC| LOCOMOTIONAuthors: Usubiaga-Liaño, Arkaitz; Arto, Inaki; Acosta-Fernández, Jose;The number of input-output assessments focused on energy has grown considerably in the last years. Many of these assessments combine data from multi-regional input-output (MRIO) databases with energy extensions that completely or partially depict the different stages through which energy products are supplied or used in the economy. The improper use of some energy extensions can lead to double accounting of some energy flows, but the frequency with which this happens and the potential impact on the results are unknown. Based on a literature review, we estimate that around a quarter of the MRIO-based energy assessments reviewed incurred into double accounting. Using the EXIOBASE MRIO database, we also analyse the effects of double accounting in the absolute values and rankings of different countries and products energy footprints. Building on the insights provided by our analysis, we offer a set of key recommendations to MRIO users to avoid the double accounting problem in the future. Likewise, we conclude that the harmonisation of the energy data across MRIO databases led by experts could simplify the choices of the data users until the provision of official energy extensions by statistical offices becomes a widespread practice. © 2021 Elsevier Ltd IA thanks the support of the Spanish Ministry of Science, Innovation, and Universities , through the project MALCON , RTI 2018-099858-A-I00 , the Spanish State Research Agency through María de Maeztu Excellence Unit accreditation 2018–2022 (Ref. MDM-2017-0714 ), the Basque Government BERC Programme, and the EU H2020 project LOCOMOTION (GA no 821105 )
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.119891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.119891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, NetherlandsPublisher:Wiley Authors: Paul Behrens; Vassilis Daioglou; Vassilis Daioglou; Arkaitz Usubiaga-Liaño;doi: 10.1111/jiec.12982
handle: 1887/3188391
AbstractThe global food system is a major energy user and a relevant contributor to climate change. To date, the literature on the energy profile of food systems addresses individual countries and/or food products, and therefore a comparable assessment across regions is still missing. This paper uses a global multi‐regional environmentally extended input–output database in combination with newly constructed net energy‐use accounts to provide a production and consumption‐based stock‐take of energy use in the food system across different world regions for the period 2000–2015. Overall, the ratio between energy use in the food system and the economy is slowly decreasing. Likewise, the absolute values point toward a relative decoupling between energy use and food production, as well as to relevant differences in energy types, users, and consumption patterns across world regions. The use of (inefficient) traditional biomass for cooking substantially reduces the expected gap between per capita figures in high‐ and low‐income countries. The variety of energy profiles and the higher exposure to energy security issues compared to the total economy in some regions suggests that interventions in the system should consider the geographical context. Reducing energy use and decarbonizing the supply chains of food products will require a combination of technological measures and behavioral changes in consumption patterns. Interventions should consider the effects beyond the direct effects on energy use, because changing production and consumption patterns in the food system can lead to positive spillovers in the social and environmental dimensions outlined in the Sustainable Development Goals.
Journal of Industria... arrow_drop_down Leiden University Scholarly Publications RepositoryArticle . 2020Data sources: Leiden University Scholarly Publications RepositoryJournal of Industrial EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Leiden University Scholarly Publications RepositoryArticle . 2020Data sources: Leiden University Scholarly Publications RepositoryJournal of Industrial EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Informa UK Limited Authors: Arkaitz Usubiaga; José Acosta-Fernández;Consumption-based CO2 emissions, which are commonly calculated by means of environmentally extended input–output analysis, are gaining wider recognition as a way to complement territorial emission inventories. Although their use has increased significantly in the last years, insufficient attention has been paid to the methodological soundness of the underlying environmental extension. This should follow the internationally agreed accounting rules of the System of Environmental-Economic Accounting, which addresses the activities undertaken by the residents of a country, independent from where these take place. Nonetheless, some footprint calculations use extensions that account for all the activities within the territory, which leads to methodological inconsistencies. Thus, this article introduces the most relevant conceptual differences between these accounting frameworks and shows the magnitude of the gap between them building on the data generated for the EXIOBASE model. It concludes that the difference...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2015.1049126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2015.1049126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Norway, Netherlands, Germany, United Kingdom, Netherlands, Germany, AustriaPublisher:Wiley Funded by:EC | DESIREEC| DESIREStadler, K; Wood, R.; Bulavskaya, T.; Sodersten, C.J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernandez, J.; Kuenen, J.; Bruckner, M.; Giljum, S.; Lutter, S.; Merciai, S.; Schmidt, J.H.; Theurl, M.C.; Plutzar, C.; Kastner, T.; Eisenmenger, N.; Erb, K; H.,; Koning, de, A.; Tukker, A.;doi: 10.1111/jiec.12715
handle: 1887/67827 , 1887/59451 , 11250/2578406
SummaryEnvironmentally extended multiregional input‐output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental‐Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:American Chemical Society (ACS) Gibran Vita; Narasimha D. Rao; Arkaitz Usubiaga-Liaño; Jihoon Min; Richard Wood;Supplementary Data File for: Vita, G., Rao, N. D., Usubiaga‐Liaño, A., Min, J. & Wood, R. Durable goods drive two-thirds of global households’ final energy footprints. Environ. Sci. Technol. (2021).
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental Science and TechnologyArticle . 2021Data sources: Open Universiteit research portalEnvironmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefOpen University of the Netherlands Research PortalArticle . 2021Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c03890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 53 Powered bymore_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental Science and TechnologyArticle . 2021Data sources: Open Universiteit research portalEnvironmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefOpen University of the Netherlands Research PortalArticle . 2021Data sources: Open University of the Netherlands Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c03890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:EC | EMININNEC| EMININNAuthors: McDowall, WAS; Solano Rodriguez, B; Usubiaga, A; Acosta Fernández, J;Energy system optimization models (ESOMs) such as MARKAL/TIMES are used to support energy policy analysis worldwide. ESOMs cover the full life-cycle of fuels from extraction to end-use, including the associated direct emissions. Nevertheless, the life-cycle emissions of energy equipment and infrastructure are not modelled explicitly. This prevents analysis of questions relating to the relative importance of emissions associated with the build-up of infrastructure and other equipment required for decarbonization. We have soft-linked an environmentally-extended input-output (EEIO) model to a European TIMES Model (ETM-UCL) with the aim of addressing the following questions: - In what ways does the inclusion of indirect emissions change the optimal technology pathway for decarbonizing the European energy system? - How much does the present value of key low-carbon technologies change when indirect emissions are accounted for in a decarbonization scenario for Europe? We show that, although indirect emissions are a relatively small portion of overall power sector emissions (<10% in 2050), including them in the model leads to changes in the optimal power sector portfolio. Renewable energy technologies become relatively less attractive once indirect emissions are included within the optimization framework, and we quantify this effect, showing that it is not large. Changes to the relative attractiveness of specific renewable energy technologies are more pronounced than the reduction in attractiveness of renewable energy as a whole: in our main scenarios wind energy saw increased relative deployment in 2050 when indirect emissions are accounted for, since it displaced other technologies with higher life-cycle emissions (notably solar PV). Optimal cumulative installed capacity of PV in the EU 2050 is at least 7% lower when indirect emissions are included. We conclude that policy advice derived from ESOMs that focuses on the roles of specific technologies should ensure that it is robust to the possible effects of indirect emissions.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.09.132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.09.132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | DESIREEC| DESIREAuthors: Stadler, Konstantin; Wood, Richard; Bulavskaya, Tatyana; Södersten, Carl-Johan; +17 AuthorsStadler, Konstantin; Wood, Richard; Bulavskaya, Tatyana; Södersten, Carl-Johan; Simas, Moana; Schmidt, Sarah; Usubiaga, Arkaitz; Acosta-Fernández, José; Kuenen, Jeroen; Bruckner, Martin; Giljum, Stefan; Lutter, Stephan; Merciai, Stefano; Schmidt, Jannick H; Theurl, Michaela C; Plutzar, Christoph; Kastner, Thomas; Eisenmenger, Nina; Erb, Karl-Heinz; Koning, Arjan; Tukker, Arnold;EXIOBASE 3 provides a time series of environmentally extended multi-regional input‐output (EE MRIO) tables ranging from 1995 to a recent year for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUT) in a 163 industry by 200 products classification as the main building blocks. The tables are provided in current, basic prices (Million EUR). EXIOBASE 3 is the culmination of work in the FP7 DESIRE project and builds upon earlier work on EXIOBASE 2 in the FP7 CREEA project and EXIOBASE 1 of the FP6 EXIOPOL project. These databases are available at the official EXIOBASE website. A special issue of Journal of Industrial Ecology (Volume 22, Issue 3) describes the build process and some use cases of EXIOBASE 3. This includes the article by Stadler et. al 2018 describing the compilation of EXIOBASE 3. Further informations (data quality, updates, ...) can be found in the blog post describing a previous release at the Environmental Footprints webpage. Various concordance tables for the database are available here. For more (background) information see the Readme file. Previous EXIOBASE 3 Versions Some previous versions (3.7, 3.8) are also available on Zenodo. The even earlier public releases of the data (EXIOBASE v3.3 and v3.4) are available upon request. We recommend, however, to use the latest version due to major differences in water and land use accounts. End year The original EXIOBASE 3 data series ends 2011. In addition, we also have estimates based on a range of auxiliary data, but mainly trade and macro-economic data which go up to 2022 when including IMF expectations. A lot of care must be taken in use of this data. It is only partially suitable for analysing trends over time! The basic description of the process employed is in the relevant deliverable. As of v3.8 (doi: 10.5281/zenodo.4277368), the end years of real data points used are: 2015 energy, 2019 all GHG (non fuel, non-CO2 are nowcasted from 2018), 2013 material, 2011 most others, land, water. More details are available in the readme file. The EXIOBASE country disaggregated dataset EXIOBASE3rx provides land updates to 2015. Some work is going on to update the extensions, but other collaborative efforts are more than welcome. Bulk Download To allow the download of specific years we uploaded the data as zip archives per year and mrio type (industry by industry: ixi, and product by product: pxp). If you need all data, we recommend the excellent zenodo_get python utility for the download. After installing the tool, you can download the latest version with: zenodo_get 10.5281/zenodo.3583070 Previous versions are available by replacing the latest DOI with previous record numbers. Alternatively, you can contact Richard Wood or Konstantin Stadler for access to the Box data repository. IOT download and Pymrio integration If your are only interested in the IO tables, Pymrio (version >= 0.4.5) includes an automatic EXIOBASE 3 download function which works with the EXIOBASE upload on zenodo. The EXIOBASE 3 files can then be parsed and analysed directly. Nomenclature Archives: IOT_YYYY_ixi.zip - MRIO archive for Year YYYY in industry by industry format IOT_YYYY_ixi.zip - MRIO archive for Year YYYY in product by product format MRSUT_YYYY.zip - Multi-regional Supply-Use table for year YYYY SUT.zip - Domestic Supply Use for each country and year Content of IOT*.zip: (the archive can be read directly by pymrio without unpacking). The economic core is stored in the root of the archive, containing among others: Z.txt - flow/transactions matrix A.txt - matrix/inter-industry coefficients, (direct requirements matrix) Y.txt - final demand x.txt - gross/total output unit.txt - Units of the flow data The satellite accounts and characterized impacts are stored in the subfolder "satellite" and "impacts", both containing: F.txt - Factors of productions/stressors/impacts F_Y.txt - Stressors/impacts of the final demand, S.txt - Direct stressor/impact coefficients S_Y.txt - Stressor/impact coefficients of the final demand M.txt - MRIO extension multipliers (total requirement factors of consumption) D_cba.txt - Consumption based accounts per sector D_pba.txt - Production based accounts per sector D_cba_reg.txt - Consumption based accounts per region D_pba_reg.txt - Production based accounts per region D_imp_reg.txt - Import accounts per region D_exp_reg.txt - Export accounts per region unit.txt - Absolute units of the stressor and impacts The unit of the coefficient data M and S are given be the unit of the satellite account per unit of the economic core (e.g. kg CO2eq/Million Euro) Announcements We use the EXIOBASE google group for announcing new versions of the database. v3.8.1 is a minor update to v3.8 due to the existing of a few bugs (negative values) in the v3.8 release. As a result, the balancing has been redone in v3.8.1 with a different constraint set on maximum/minimum allowable values. In the process, the objective function was switched from a QP to Cross Entropy objective. In addition, IOT tables now include flow (F, Z) and coefficient matrices (A, S) as well as consumption based accounts (footprints, D_cba) and multipliers (M). IOT tables now also include characterized impacts (in the extension "impacts"). More information can be found in the included README file. {"references": ["Stadler et al. 2018 (10.1111/jiec.12715)"]}
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3583071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3583071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:UKRI | Euro-China Green Economy ...UKRI| Euro-China Green Economy theme: SINCERE (Sino-European Circular Economy and Resource Efficiency)Nechifor-Vostinaru, V; Calzadilla Rivera, A; Bleischwitz, R; Winning, M; Tian, X; Usubiaga, A;Abstract China is increasingly known for its ambitions towards an ‘ecological civilisation’ and a circular economy. Our article assesses the implications of an accelerated shift towards steel recycling in China. Given the relevance of steel for development worldwide as well as its environmental intensity, any such shift is likely to have implications for competitiveness in China and beyond. Recent findings suggest that China could take advantage of an increasing availability of obsolete steel scrap in the coming decades, moving towards more circular, and potentially greener, steel production. We assess such industrial restructuring from an economic perspective and address the competitiveness of China relative to other developing and industrialised regions. The analysis uses a novel global economy-wide modelling framework (ENGAGE-materials) to assess the aggregate and sector-level impacts of different scrap use options in China in the 2019–2030 time frame. The results show moderate GDP gains for China of cumulated USD 589 billion in GDP gains by 2030 despite a replacement of primary steel capacity. A more comprehensive industrial policy mix aimed at improved recycling practices and more adaptive downstream sectors could increase gains to USD 819 billion. The international implications are mixed, with losses for iron ore producers (Australia, Brazil and India) and gains for most developing countries benefiting from lower steel prices. Another result is an increasing demand for coal in electricity production if such a shift wouldn’t be aligned with an accelerated energy transition towards low carbon pathways. We discuss policy implications of such alignment, potential co-benefits, and a need for green international partnerships.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.worlddev.2019.104775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.worlddev.2019.104775&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | EMININNEC| EMININNAuthors: Usubiaga, A; Acosta-Fernández, J; McDowall, W; Li, F;Replacing traditional technologies by renewables can lead to an increase of emissions during early diffusion stages if the emissions avoided during the use phase are exceeded by those associated with the deployment of new units. Based on historical developments and on counterfactual scenarios in which we assume that selected renewable technologies did not diffuse, we conclude that onshore and offshore wind energy have had a positive contribution to climate change mitigation since the beginning of their diffusion in EU27. In contrast, photovoltaic panels did not pay off from an environmental standpoint until very recently, since the benefits expected at the individual plant level were offset until 2013 by the CO2 emissions related to the construction and deployment of the next generation of panels. Considering the varied energy mixes and penetration rates of renewable energies in different areas, several countries can experience similar time gaps between the installation of the first renewable power plants and the moment in which the emissions from their infrastructure are offset. The analysis demonstrates that the time-profile of renewable energy emissions can be relevant for target-setting and detailed policy design, particularly when renewable energy strategies are pursued in concert with carbon pricing through cap-and-trade systems.
Energy Policy arrow_drop_down Publikationsserver des Wuppertal Instituts für Klima, Umwelt, EnergieArticle . 2017License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Policy arrow_drop_down Publikationsserver des Wuppertal Instituts für Klima, Umwelt, EnergieArticle . 2017License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2014 Austria, Netherlands, Germany, Germany, Norway, Germany, NetherlandsPublisher:MDPI AG Funded by:EC | CREEAEC| CREEAJosé Acosta-Fernández; Arjan de Koning; Stefan Giljum; Stefano Merciai; Stephan Lutter; Moana Simas; Konstantin Stadler; Arkaitz Usubiaga; Jan Weinzettel; Jan Weinzettel; Helmut Schütz; Jannick Højrup Schmidt; Olga Ivanova; Arnold Tukker; Arnold Tukker; Arnold Tukker; Tatyana Bulavskaya; Richard Wood; Jeroen Kuenen;doi: 10.3390/su7010138
handle: 1887/46366 , 11250/2364836
Measuring progress towards sustainable development requires appropriate frameworks and databases. The System of Environmental-Economic Accounts (SEEA) is undergoing continuous refinement with these objectives in mind. In SEEA, there is a need for databases to encompass the global dimension of societal metabolism. In this paper, we focus on the latest effort to construct a global multi-regional input−output database (EXIOBASE) with a focus on environmentally relevant activities. The database and its broader analytical framework allows for the as yet most detailed insight into the production-related impacts and “footprints” of our consumption. We explore the methods used to arrive at the database, and some key relationships extracted from the database.
Sustainability arrow_drop_down SustainabilityOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2071-1050/7/1/138/pdfData sources: Multidisciplinary Digital Publishing InstituteePubWU Institutional RepositoryArticle . 2014 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Leiden University Scholarly Publications RepositoryArticle . 2014Data sources: Leiden University Scholarly Publications RepositoryDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7010138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 345 citations 345 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2071-1050/7/1/138/pdfData sources: Multidisciplinary Digital Publishing InstituteePubWU Institutional RepositoryArticle . 2014 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Leiden University Scholarly Publications RepositoryArticle . 2014Data sources: Leiden University Scholarly Publications RepositoryDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7010138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, SpainPublisher:Elsevier BV Funded by:EC | LOCOMOTIONEC| LOCOMOTIONAuthors: Usubiaga-Liaño, Arkaitz; Arto, Inaki; Acosta-Fernández, Jose;The number of input-output assessments focused on energy has grown considerably in the last years. Many of these assessments combine data from multi-regional input-output (MRIO) databases with energy extensions that completely or partially depict the different stages through which energy products are supplied or used in the economy. The improper use of some energy extensions can lead to double accounting of some energy flows, but the frequency with which this happens and the potential impact on the results are unknown. Based on a literature review, we estimate that around a quarter of the MRIO-based energy assessments reviewed incurred into double accounting. Using the EXIOBASE MRIO database, we also analyse the effects of double accounting in the absolute values and rankings of different countries and products energy footprints. Building on the insights provided by our analysis, we offer a set of key recommendations to MRIO users to avoid the double accounting problem in the future. Likewise, we conclude that the harmonisation of the energy data across MRIO databases led by experts could simplify the choices of the data users until the provision of official energy extensions by statistical offices becomes a widespread practice. © 2021 Elsevier Ltd IA thanks the support of the Spanish Ministry of Science, Innovation, and Universities , through the project MALCON , RTI 2018-099858-A-I00 , the Spanish State Research Agency through María de Maeztu Excellence Unit accreditation 2018–2022 (Ref. MDM-2017-0714 ), the Basque Government BERC Programme, and the EU H2020 project LOCOMOTION (GA no 821105 )
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.119891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.119891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, NetherlandsPublisher:Wiley Authors: Paul Behrens; Vassilis Daioglou; Vassilis Daioglou; Arkaitz Usubiaga-Liaño;doi: 10.1111/jiec.12982
handle: 1887/3188391
AbstractThe global food system is a major energy user and a relevant contributor to climate change. To date, the literature on the energy profile of food systems addresses individual countries and/or food products, and therefore a comparable assessment across regions is still missing. This paper uses a global multi‐regional environmentally extended input–output database in combination with newly constructed net energy‐use accounts to provide a production and consumption‐based stock‐take of energy use in the food system across different world regions for the period 2000–2015. Overall, the ratio between energy use in the food system and the economy is slowly decreasing. Likewise, the absolute values point toward a relative decoupling between energy use and food production, as well as to relevant differences in energy types, users, and consumption patterns across world regions. The use of (inefficient) traditional biomass for cooking substantially reduces the expected gap between per capita figures in high‐ and low‐income countries. The variety of energy profiles and the higher exposure to energy security issues compared to the total economy in some regions suggests that interventions in the system should consider the geographical context. Reducing energy use and decarbonizing the supply chains of food products will require a combination of technological measures and behavioral changes in consumption patterns. Interventions should consider the effects beyond the direct effects on energy use, because changing production and consumption patterns in the food system can lead to positive spillovers in the social and environmental dimensions outlined in the Sustainable Development Goals.
Journal of Industria... arrow_drop_down Leiden University Scholarly Publications RepositoryArticle . 2020Data sources: Leiden University Scholarly Publications RepositoryJournal of Industrial EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Leiden University Scholarly Publications RepositoryArticle . 2020Data sources: Leiden University Scholarly Publications RepositoryJournal of Industrial EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Informa UK Limited Authors: Arkaitz Usubiaga; José Acosta-Fernández;Consumption-based CO2 emissions, which are commonly calculated by means of environmentally extended input–output analysis, are gaining wider recognition as a way to complement territorial emission inventories. Although their use has increased significantly in the last years, insufficient attention has been paid to the methodological soundness of the underlying environmental extension. This should follow the internationally agreed accounting rules of the System of Environmental-Economic Accounting, which addresses the activities undertaken by the residents of a country, independent from where these take place. Nonetheless, some footprint calculations use extensions that account for all the activities within the territory, which leads to methodological inconsistencies. Thus, this article introduces the most relevant conceptual differences between these accounting frameworks and shows the magnitude of the gap between them building on the data generated for the EXIOBASE model. It concludes that the difference...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2015.1049126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2015.1049126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu