Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Country
  • Source
    Clear
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Frontiers in Water

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Solange Uwamahoro; Solange Uwamahoro; Solange Uwamahoro; Tie Liu; +30 Authors

    Lake Issyk-Kul is an endorheic lake in arid Central Asia that is vital to the region's ecological sustainability and socio-economic development. Climate change and anthropogenic water consumption led to fluctuations in the lake's water level, which affected the water resource. The goal of this study was to examine the impacts of climate change and human activities on the Issyk-Kul water balance by combining the Coupled Model Intercomparison Project Phase 6 (CMIP6) scenarios with hydrological modeling. The Soil and Water Assessment Tool (SWAT) model was used to incorporate signals of future precipitation and temperature changes. According to the scenarios, the total discharge of the three catchments showed an overall increasing trend with a maximum value of 28.02%. The snow and ice-melt water from March to August was revealed, and the increasing trends only occurred from March to May, with the snow and ice melting peak variations ranging from 0.5% to 2%. The high increase in change appeared in northern catchment of the lake. There was an exceptional upward precipitation trend over the northern catchment, with annual increases ranging from 0.7 to 14.5%, and an average annual temperature of 1.72°C. With slight similarities, the total runoff would increase for all catchments, with an average annual value of 10.6%. The northern catchment was significantly more sensitive to precipitation and warming than the southeastern catchments. Under land use land cover change, average annual discharge decreased with agricultural expansion, with discharge differences ranging from −0.005 to −1.06 m3/s. The findings are useful for decision-makers addressing the challenges of climate change mitigation and local water resource management.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Waterarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Water
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Water
    Article . 2024
    Data sources: DOAJ
    https://dx.doi.org/10.60692/w1...
    Other literature type . 2024
    Data sources: Datacite
    https://dx.doi.org/10.60692/69...
    Other literature type . 2024
    Data sources: Datacite
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Waterarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Water
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Water
      Article . 2024
      Data sources: DOAJ
      https://dx.doi.org/10.60692/w1...
      Other literature type . 2024
      Data sources: Datacite
      https://dx.doi.org/10.60692/69...
      Other literature type . 2024
      Data sources: Datacite
      addClaim
Powered by OpenAIRE graph