- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, FrancePublisher:MDPI AG Hadj Sadok, Rachid; Maherzi, Walid; Benzerzour, Mahfoud; Lord, Richard; Torrance, Keith; Zambon, Agnes; Abriak, Nor-Edine;doi: 10.3390/su13169057
This research study evaluated the effects of adding Scottish canal sediment after calcination at 750 °C in combination with GGBS on hydration, strength and microstructural properties in ternary cement mixtures in order to reduce their carbon footprint (CO2) and cost. A series of physico-chemical, hydration heat, mechanic performance, mercury porosity and microstructure tests or observations was performed in order to evaluate the fresh and hardened properties. The physical and chemical characterisation of the calcined sediments revealed good pozzolanic properties that could be valorised as a potential co-product in the cement industry. The results obtained for mortars with various percentages of calcined sediment confirmed that this represents a previously unrecognised potential source of high reactivity pozzolanic materials. The evolution of the compressive strength for the different types of mortars based on the partial substitution of cement by slag and calcined sediments showed a linear increase in compressive strength for 90 days. The best compressive strengths and porosity were observed in mortars composed of 50% cement, 40% slag and 10% calcined sediment (CSS10%) after 90 days. In conclusion, the addition of calcined canal sediments as an artificial pozzolanic material could improve strength and save significant amounts of energy or greenhouse gas emissions, while potentially contributing to Scotland’s ambitious 2045 net zero target and reducing greenhouse gas emissions by 2050 in the UK and Europe.
CORE arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9057/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9057/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:MDPI AG Authors: Keith Torrance; Richard Alastair Lord; Alasdair Hamilton; Paul Berry;doi: 10.3390/su15129261
The aim of the SURICATES (Sediment Uses as Resources in Circular And Territorial EconomieS) Project is to increase sediment reuse for erosion and flood protection. To investigate potential opportunities to reuse dredged sediments as topsoil following phyto-conditioning, a pilot scale operation was undertaken at Bowling, Scotland. As part of normal maintenance, 550 m3 of wet sediment was removed from the Forth and Clyde Canal at Old Kilpatrick by Scottish Canals using a hydraulic excavator during September 2020, transported by barge, then transferred to a dewatering cell constructed in an old canal basin by lining with a geotextile break-layer and installing engineered drainage. Following initial dewatering, the sediment was sown with three varieties of grass, which each germinated and survived the winter. By March 2021 composite soil samples already met the BS 3882:2015 criteria for topsoil, other than for Zn levels, which reflected the locally elevated baseline values. This allowed the conditioned sediment to be used immediately as topsoil as part of the nearby construction of a long-distance cycle track following an old railway embankment. Following reuse, replicated validations of six grass or wildflower seed mixtures were sown in April 2021 and monitored to verify longer-term suitability as a landscaping soil.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/12/9261/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15129261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/12/9261/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15129261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, FrancePublisher:MDPI AG Hadj Sadok, Rachid; Maherzi, Walid; Benzerzour, Mahfoud; Lord, Richard; Torrance, Keith; Zambon, Agnes; Abriak, Nor-Edine;doi: 10.3390/su13169057
This research study evaluated the effects of adding Scottish canal sediment after calcination at 750 °C in combination with GGBS on hydration, strength and microstructural properties in ternary cement mixtures in order to reduce their carbon footprint (CO2) and cost. A series of physico-chemical, hydration heat, mechanic performance, mercury porosity and microstructure tests or observations was performed in order to evaluate the fresh and hardened properties. The physical and chemical characterisation of the calcined sediments revealed good pozzolanic properties that could be valorised as a potential co-product in the cement industry. The results obtained for mortars with various percentages of calcined sediment confirmed that this represents a previously unrecognised potential source of high reactivity pozzolanic materials. The evolution of the compressive strength for the different types of mortars based on the partial substitution of cement by slag and calcined sediments showed a linear increase in compressive strength for 90 days. The best compressive strengths and porosity were observed in mortars composed of 50% cement, 40% slag and 10% calcined sediment (CSS10%) after 90 days. In conclusion, the addition of calcined canal sediments as an artificial pozzolanic material could improve strength and save significant amounts of energy or greenhouse gas emissions, while potentially contributing to Scotland’s ambitious 2045 net zero target and reducing greenhouse gas emissions by 2050 in the UK and Europe.
CORE arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9057/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9057/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:MDPI AG Authors: Keith Torrance; Richard Alastair Lord; Alasdair Hamilton; Paul Berry;doi: 10.3390/su15129261
The aim of the SURICATES (Sediment Uses as Resources in Circular And Territorial EconomieS) Project is to increase sediment reuse for erosion and flood protection. To investigate potential opportunities to reuse dredged sediments as topsoil following phyto-conditioning, a pilot scale operation was undertaken at Bowling, Scotland. As part of normal maintenance, 550 m3 of wet sediment was removed from the Forth and Clyde Canal at Old Kilpatrick by Scottish Canals using a hydraulic excavator during September 2020, transported by barge, then transferred to a dewatering cell constructed in an old canal basin by lining with a geotextile break-layer and installing engineered drainage. Following initial dewatering, the sediment was sown with three varieties of grass, which each germinated and survived the winter. By March 2021 composite soil samples already met the BS 3882:2015 criteria for topsoil, other than for Zn levels, which reflected the locally elevated baseline values. This allowed the conditioned sediment to be used immediately as topsoil as part of the nearby construction of a long-distance cycle track following an old railway embankment. Following reuse, replicated validations of six grass or wildflower seed mixtures were sown in April 2021 and monitored to verify longer-term suitability as a landscaping soil.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/12/9261/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15129261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/12/9261/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15129261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu