Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
    Clear
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 8. Economic growth

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Muhammad Bilal; orcid Muhammad Usman;
    Muhammad Usman
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Usman in OpenAIRE
    Usama Ahmed; orcid Hassan Zeb;
    Hassan Zeb
    ORCID
    Harvested from ORCID Public Data File

    Hassan Zeb in OpenAIRE
    +3 Authors

    Abstract An increase in energy demand in the recent decades have created energy shortages that can be fulfilled by the use of fossil fuels. Gasification and reforming techniques are effective methods for producing syngas and hydrogen from natural gas and coal. The two process models have been developed in this study, in which syngas and hydrogen is produced from coal and natural gas. The case 1 relies on the entrained flow gasification unit which is validated by literature data, and then integrated with the reforming process reforming to generate the case 2. The integrated gasifier and reforming model was created to increase H2 output while lowering the total carbon footprints. In case of 2nd model, the hydrogen to carbon monoxide ratio (HCR) is 1.20 which is almost 88% higher than the baseline. Due to the higher HCR in case 2, the overall production of H2 is 55% higher than the case 2. Moreover, the efficiency of case 2 is 18.5% higher which reduces the carbon emissions by 69.6% per unit of hydrogen production compared to case 1.Furthermore, the investment per ton of hydrogen production and hydrogen selling prices in Case 2 is 28.9% lower compared to the case 1 design.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemical Engineering and Processing - Process Intensification
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemical Engineering and Processing - Process Intensification
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph