- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 FrancePublisher:The Royal Society Funded by:ANR | FEMANR| FEMAuthors: Maxime Thiébaut; Jean-François Filipot; Christophe Maisondieu; Guillaume Damblans; +3 AuthorsMaxime Thiébaut; Jean-François Filipot; Christophe Maisondieu; Guillaume Damblans; Christian Jochum; Levi F. Kilcher; Sylvain Guillou;pmid: 32713316
A system of two coupled four-beam acoustic Doppler current profilers was used to collect turbulence measurements over a 36-h period at a highly energetic tidal energy site in Alderney Race. This system enables the evaluation of the six components of the Reynolds stress tensor throughout a large proportion of the water column. The present study provides mean vertical profiles of the velocity, the turbulence intensity and the integral lengthscale along the streamwise, spanwise and vertical direction of the tidal current. Based on our results and considering a tidal-stream energy convertor (TEC) aligned with the current main direction, the main elements of turbulence prone to affect the structure (material fatigue) and to alter power generation would likely be: (i) the streamwise turbulence intensity ( I x ), (ii) the shear stress, v ′ w ′ ¯ , (iii) the normal stress, u ′ 2 ¯ and (iv) the vertical integral lengthscale ( L z ). The streamwise turbulence intensity, ( I x ), was found to be higher than that estimated at other tidal energy sites across the world for similar height above bottom. Along the vertical direction, the length ( L z ) of the large-scale turbulence eddies was found to be equivalent to the rotor diameter of the TEC Sabella D10. It is considered that the turbulence metrics presented in this paper will be valuable for TECs designers, helping them optimize their designs as well as improve loading prediction through the lifetime of the machines. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.
Philosophical Transa... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2019.0495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2019.0495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 FrancePublisher:MDPI AG Authors: Grondeau, Mikaël; Guillou, Sylvain; Mercier, Philippe; Poizot, Emmanuel;doi: 10.3390/en12224273
Vertical axis tidal turbines are devices that extract the kinetic energy from tidal currents. Tidal currents can be highly turbulent. Since ambient turbulence affects the turbine hydrodynamic, it is critical to understand its influence in order to optimize tidal farms. Actuator Line Model (ALM) combined with Large Eddy Simulation (LES) is a promising way to comprehend this phenomenon. In this article, an ALM was implemented into a Lattice Boltzmann Method (LBM) LES solver. This implementation gives good results for predicting the wake of a vertical axis tidal turbine placed into a turbulent boundary layer. The validated numerical configuration was then used to compute the wake of a real size ducted vertical axis tidal turbine. Several upstream turbulence rates were simulated. It was found that the shape of the wake is strongly influenced by the ambient turbulence. The cost-to-precision ratio of ALM-LBM-LES compared to fully resolved LBM-LES makes it a promising way of modeling tidal farms.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Elsevier BV Authors: Jérôme Thiébot; Pascal Bailly du Bois; Sylvain Guillou;A regional 2DH hydrodynamic model is used to estimate the tidal stream resource of a site located in a macrotidal environment with extreme tidal velocities. The study site is the Alderney Race (Raz Blanchard in French) which is a straight located in the English Channel between the Alderney Island and La Hague cape (France). The estimation of the resource is used to build two realistic tidal energy extraction scenarios consisting in placing a 290 MW tidal turbine array in two different areas. Then, we analyze the impact of turbines on the hydrodynamics and the sediment transport. The hydrodynamic perturbation is restricted to the vicinity of the array where the mean current velocity reduction reaches 0.3 m/s locally (corresponding to 15% of the baseline velocity). Focusing on the variable driving the bedload (the critical erosion threshold exceedance), we confirm that tidal energy extraction tends to reduce the bedload rate and to deflect the sediment fluxes. Our simulations with a simple model for the suspended sediment transport suggest that tidal energy extraction has a significant effect on the area of deposition of the particles transiting through the tidal farm. For the baseline, the sediment particles transiting through the tidal farm deposit mostly in the eastern part of the English Channel. Depending on the location of the tidal farm, the sediment mass balance between the eastern and the western part of the English Channel changes drastically.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 FrancePublisher:Elsevier BV Funded by:ANR | FEMANR| FEMMikaël Grondeau; Jean-François Filipot; Emmanuel Poizot; Emmanuel Poizot; Maxime Thiébaut; Philippe Mercier; Christophe Maisondieu; Sylvain Guillou; Aline Pieterse; Jérôme Thiébot;Abstract The deployment of tidal turbines requires a precise hydrodynamic characterisation of the production site. Acoustic Doppler Current Profilers (ADCP), usually employed for measuring the time-mean characteristics of environmental flows, could also be used for assessing the main features of turbulence. ADCP measurements are sensitive to many sources of uncertainties associated mainly with the spreading of the beams or the assumptions made on flow homogeneity. The ability of ADCPs to accurately measure the hydrodynamic parameters of a given flow can be tested on a synthetic dataset. However, it is difficult to generate a dataset representative of a real environmental flow. In this work, large-eddy simulation of a high Reynolds flow over a rough seabed is performed and used to assess the accuracy of two, coupled, 4-beam ADCP systems forming an 8-beam arrangement. The study confirms the relevance and efficiency of the tested 8-beam configuration for the characterisation of turbulence. The results near the seabed are of a lower quality, with up to 50 % error on the Reynolds stresses for elevations under twice the roughness height, which questions the interpretation of ADCP measurements in the lower part of the water column. Also, the spatial averaging over ADCP cells leads to an underestimation of the turbulence intensity of 10 % to 20 %.
Normandie Université... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2021.108819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Normandie Université... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2021.108819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Kabir Bashir Shariff; Sylvain S. Guillou;doi: 10.3390/en18092257
This study seeks to establish a comprehensive model for estimating both the velocity deficit and turbulence intensity within a tidal turbine farm across various layout configurations. The model incorporates a spectrum of ambient turbulence intensity ranging from 5% to 20%, a rotor diameter-to-depth ratio between 20% and 60%, and a rotor thrust coefficient that varies from 0.64 to 0.98. The influence of added turbulence is factored into the evaluation of the velocity deficit within the farm. Consistent with findings from prior research, the results indicate that in a tidal farm consisting of 16 turbines, a staggered array configuration yields 21% more power compared to a rectilinear array. This staggered setup benefits from enhanced flow acceleration and greater spacing between turbines, which facilitates improved wake recovery. The findings suggest that the farm’s dimensions can be optimized by reducing lateral spacing in the rectilinear array and longitudinal spacing in the staggered array without compromising efficiency. Such reductions in farm size can lead to decreased cable expenses and create opportunities for future expansion. For the tidal turbines in shallow water regions, the ratio of rotor diameter to depth is shown to affect the power generated by the turbines. The power produced in the farm decreases with an increase in the rotor diameter-to-depth ratio due to the limited wake expansion along the vertical plane. The efficiency of a tidal farm can be increased by high ambient turbulent intensity, sufficient turbine spacing, and low rotor diameter-to-depth ratio. These factors improve the wake recovery to allow more energy to be extracted by a downstream turbine. This low-computational model can be useful in studying the wake interaction of tidal turbine parks in different configurations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:The Royal Society Authors: Adrien C. L. Bourgoin; Sylvain S. Guillou; Jérôme Thiébot; Riadh Ata;Sites suitable for the deployment of tidal turbines generally show a combination of complex seabed morphologies and extreme current magnitudes. Such configurations favour the formation of vortices, which can be very powerful. Anticipating the vortex effect on the turbine performance and/or lifespan requires refined description of the turbulence. Thanks to increased calculation resources, large-eddy simulation (LES) can now be applied to natural flow. An LES approach developed within the TELEMAC-3D open-source software is presented here. After validating the model with in-situ measurements, the model is applied to characterize the flow statistics of the Alderney Race. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2019.0499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2019.0499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 FrancePublisher:MDPI AG Authors: Van Thinh Nguyen; Alina Santa Cruz; Sylvain S. Guillou; Mohamad N. Shiekh Elsouk; +1 AuthorsVan Thinh Nguyen; Alina Santa Cruz; Sylvain S. Guillou; Mohamad N. Shiekh Elsouk; Jérôme Thiébot;doi: 10.3390/en12132478
This study aims to investigate the influence of the current direction on the energy production of a tidal turbines array. It is based on a three-dimensional (3D) numerical simulation of the flow where the turbines are represented with actuator disks. The case study consists of modelling the energy extraction of a small array of turbines (staggered and aligned layouts) placed in the Raz Blanchard (Alderney Race, France). The simulations are performed with hydrodynamic data (current magnitude and direction) representative of a mean tide, with several resistance forces and ambient turbulence intensities. The influence of the current direction on the energy production is highlighted by comparing the simulations forced with the real current direction with those in which the angle of incidence between the incoming flow and the turbine’s axis is “switched off” (bi-directional flow). When the flow is aligned with the turbines’ axis (misalignment “switched off”), the staggered layout produces more than the aligned arrangement. Comparison of the two types of simulations (misalignment switched off or not) shows that the misalignment of the flow around a predominant direction reduces the energy produced by the staggered layout and increases the production of the aligned layout. Furthermore, it suggests that the mean energy produced per machine is almost the same for both layouts. Higher turbulence intensity reduces the positive effect of the directional spreading on the aligned layout production and limits the negative effect on the staggered layout production.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2478/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12132478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2478/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12132478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Thiébot, Jérôme; Guillou, Nicolas; Coles, Daniel; Guillou, Sylvain;International audience ; Estimation of tidal-stream turbine loading and energy yield requires a thorough understanding of the hydrodynamic processes that influence tidal currents over a wide range of timescales. In this study, we focus on the long-term variability of the tidal-stream energy resource associated with the 18.6-year lunar cycle. Three sites in north-western Europe, with strong potential for tidal array development, are considered; the Alderney Race (English Channel), the Fromveur Strait (western Brittany) and the Ramsey Sound (Irish Sea). The investigation relies on harmonic analysis and associated predictions of depth-averaged tidal currents. Results show that the variability in predicted annual power densities is comparable at the three measurement locations. This variability reaches +/- 10% over the 18.6-year lunar cycle, and is mainly associated with M2 nodal modulations which dominate the tidal signal in north-western European shelf seas. Maximum and minimum power density occur in 2015 and 2024, respectively. 2015 is characterized by (i) reduced spring-neap variabilities and diurnal inequalities of tidal currents, and (ii) increased tidal asymmetries (between peak ebb and flood), whereas 2024 shows reverse effects. This cycle also influences the annual maximum/mean current magnitudes. The differences in maximum speeds between 2015 and 2024 are of 0.16–0.17 m/s at the three sites, which represents 4-5% of the peak speeds. The simple approach considered here may be applied in broader locations as a preliminary assessment of the long-term variability of the available tidal stream energy resource. The modulations predicted from harmonic analysis are finally expected to be on the high side of the forecasting range. Indeed, the results of an 18-year numerical simulation performed on the Alderney Race suggested a reduced effect of the 18.6-year lunar cycle on the resource.
Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apor.2022.103091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apor.2022.103091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 FrancePublisher:MDPI AG Authors: Nasteho Djama Dirieh; Jérôme Thiébot; Sylvain Guillou; Nicolas Guillou;doi: 10.3390/en15103475
Tidal turbines are located in shallow water depths in comparison to their dimensions (15 m-diameter turbines in 40 m depths, typically). Constrained vertically by the water depth and laterally by neighbouring turbines, the flow within a tidal farm is subjected to blockage effects that influence the performance of individual devices. The Betz limit (which is the maximum power extractable from an unconstrained flow) can, therefore, be exceeded as demonstrated by Garrett and Cummins. Thus, beyond a significant blockage ratio, blockage effects should be considered when assessing the energy production of a tidal farm. The actuator disk method is particularly suited to simulate the flow field within an array of turbines under realistic tidal flow conditions. However, the implementation of actuator disks in coastal numerical models relies on relationships that neglect the blockage effects on the thrust and power of devices. We propose here an actuator disk formulation corrected to integrate these effects. This modified formulation, based on the model of Whelan et al., is integrated into a regional implementation of a three-dimensional model Telemac3D targeted towards the Alderney Race (English Channel). The method is applied to two hypothetical tidal farms with aligned and staggered arrangements, respectively. Blockage corrections of the thrust and power coefficients are found to have counterbalanced effects on the array production. Thrust correction results in a noticeable flow reduction within the array. However, the associated decrease of the array production is counterbalanced by the increase of the turbine power coefficient. Blockage corrections were, therefore, found to result in a slight increase, by 3%, of the array production over a mean spring tidal cycle.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3475/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3475/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:MDPI AG Authors: Sylvain Guillou; Eric Bibeau;doi: 10.3390/en16073204
Tidal turbines generate energy from tidal currents [...]
Normandie Université... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Normandie Université... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 FrancePublisher:The Royal Society Funded by:ANR | FEMANR| FEMAuthors: Maxime Thiébaut; Jean-François Filipot; Christophe Maisondieu; Guillaume Damblans; +3 AuthorsMaxime Thiébaut; Jean-François Filipot; Christophe Maisondieu; Guillaume Damblans; Christian Jochum; Levi F. Kilcher; Sylvain Guillou;pmid: 32713316
A system of two coupled four-beam acoustic Doppler current profilers was used to collect turbulence measurements over a 36-h period at a highly energetic tidal energy site in Alderney Race. This system enables the evaluation of the six components of the Reynolds stress tensor throughout a large proportion of the water column. The present study provides mean vertical profiles of the velocity, the turbulence intensity and the integral lengthscale along the streamwise, spanwise and vertical direction of the tidal current. Based on our results and considering a tidal-stream energy convertor (TEC) aligned with the current main direction, the main elements of turbulence prone to affect the structure (material fatigue) and to alter power generation would likely be: (i) the streamwise turbulence intensity ( I x ), (ii) the shear stress, v ′ w ′ ¯ , (iii) the normal stress, u ′ 2 ¯ and (iv) the vertical integral lengthscale ( L z ). The streamwise turbulence intensity, ( I x ), was found to be higher than that estimated at other tidal energy sites across the world for similar height above bottom. Along the vertical direction, the length ( L z ) of the large-scale turbulence eddies was found to be equivalent to the rotor diameter of the TEC Sabella D10. It is considered that the turbulence metrics presented in this paper will be valuable for TECs designers, helping them optimize their designs as well as improve loading prediction through the lifetime of the machines. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.
Philosophical Transa... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2019.0495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2019.0495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 FrancePublisher:MDPI AG Authors: Grondeau, Mikaël; Guillou, Sylvain; Mercier, Philippe; Poizot, Emmanuel;doi: 10.3390/en12224273
Vertical axis tidal turbines are devices that extract the kinetic energy from tidal currents. Tidal currents can be highly turbulent. Since ambient turbulence affects the turbine hydrodynamic, it is critical to understand its influence in order to optimize tidal farms. Actuator Line Model (ALM) combined with Large Eddy Simulation (LES) is a promising way to comprehend this phenomenon. In this article, an ALM was implemented into a Lattice Boltzmann Method (LBM) LES solver. This implementation gives good results for predicting the wake of a vertical axis tidal turbine placed into a turbulent boundary layer. The validated numerical configuration was then used to compute the wake of a real size ducted vertical axis tidal turbine. Several upstream turbulence rates were simulated. It was found that the shape of the wake is strongly influenced by the ambient turbulence. The cost-to-precision ratio of ALM-LBM-LES compared to fully resolved LBM-LES makes it a promising way of modeling tidal farms.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4273/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Elsevier BV Authors: Jérôme Thiébot; Pascal Bailly du Bois; Sylvain Guillou;A regional 2DH hydrodynamic model is used to estimate the tidal stream resource of a site located in a macrotidal environment with extreme tidal velocities. The study site is the Alderney Race (Raz Blanchard in French) which is a straight located in the English Channel between the Alderney Island and La Hague cape (France). The estimation of the resource is used to build two realistic tidal energy extraction scenarios consisting in placing a 290 MW tidal turbine array in two different areas. Then, we analyze the impact of turbines on the hydrodynamics and the sediment transport. The hydrodynamic perturbation is restricted to the vicinity of the array where the mean current velocity reduction reaches 0.3 m/s locally (corresponding to 15% of the baseline velocity). Focusing on the variable driving the bedload (the critical erosion threshold exceedance), we confirm that tidal energy extraction tends to reduce the bedload rate and to deflect the sediment fluxes. Our simulations with a simple model for the suspended sediment transport suggest that tidal energy extraction has a significant effect on the area of deposition of the particles transiting through the tidal farm. For the baseline, the sediment particles transiting through the tidal farm deposit mostly in the eastern part of the English Channel. Depending on the location of the tidal farm, the sediment mass balance between the eastern and the western part of the English Channel changes drastically.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 FrancePublisher:Elsevier BV Funded by:ANR | FEMANR| FEMMikaël Grondeau; Jean-François Filipot; Emmanuel Poizot; Emmanuel Poizot; Maxime Thiébaut; Philippe Mercier; Christophe Maisondieu; Sylvain Guillou; Aline Pieterse; Jérôme Thiébot;Abstract The deployment of tidal turbines requires a precise hydrodynamic characterisation of the production site. Acoustic Doppler Current Profilers (ADCP), usually employed for measuring the time-mean characteristics of environmental flows, could also be used for assessing the main features of turbulence. ADCP measurements are sensitive to many sources of uncertainties associated mainly with the spreading of the beams or the assumptions made on flow homogeneity. The ability of ADCPs to accurately measure the hydrodynamic parameters of a given flow can be tested on a synthetic dataset. However, it is difficult to generate a dataset representative of a real environmental flow. In this work, large-eddy simulation of a high Reynolds flow over a rough seabed is performed and used to assess the accuracy of two, coupled, 4-beam ADCP systems forming an 8-beam arrangement. The study confirms the relevance and efficiency of the tested 8-beam configuration for the characterisation of turbulence. The results near the seabed are of a lower quality, with up to 50 % error on the Reynolds stresses for elevations under twice the roughness height, which questions the interpretation of ADCP measurements in the lower part of the water column. Also, the spatial averaging over ADCP cells leads to an underestimation of the turbulence intensity of 10 % to 20 %.
Normandie Université... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2021.108819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Normandie Université... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2021.108819&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Kabir Bashir Shariff; Sylvain S. Guillou;doi: 10.3390/en18092257
This study seeks to establish a comprehensive model for estimating both the velocity deficit and turbulence intensity within a tidal turbine farm across various layout configurations. The model incorporates a spectrum of ambient turbulence intensity ranging from 5% to 20%, a rotor diameter-to-depth ratio between 20% and 60%, and a rotor thrust coefficient that varies from 0.64 to 0.98. The influence of added turbulence is factored into the evaluation of the velocity deficit within the farm. Consistent with findings from prior research, the results indicate that in a tidal farm consisting of 16 turbines, a staggered array configuration yields 21% more power compared to a rectilinear array. This staggered setup benefits from enhanced flow acceleration and greater spacing between turbines, which facilitates improved wake recovery. The findings suggest that the farm’s dimensions can be optimized by reducing lateral spacing in the rectilinear array and longitudinal spacing in the staggered array without compromising efficiency. Such reductions in farm size can lead to decreased cable expenses and create opportunities for future expansion. For the tidal turbines in shallow water regions, the ratio of rotor diameter to depth is shown to affect the power generated by the turbines. The power produced in the farm decreases with an increase in the rotor diameter-to-depth ratio due to the limited wake expansion along the vertical plane. The efficiency of a tidal farm can be increased by high ambient turbulent intensity, sufficient turbine spacing, and low rotor diameter-to-depth ratio. These factors improve the wake recovery to allow more energy to be extracted by a downstream turbine. This low-computational model can be useful in studying the wake interaction of tidal turbine parks in different configurations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:The Royal Society Authors: Adrien C. L. Bourgoin; Sylvain S. Guillou; Jérôme Thiébot; Riadh Ata;Sites suitable for the deployment of tidal turbines generally show a combination of complex seabed morphologies and extreme current magnitudes. Such configurations favour the formation of vortices, which can be very powerful. Anticipating the vortex effect on the turbine performance and/or lifespan requires refined description of the turbulence. Thanks to increased calculation resources, large-eddy simulation (LES) can now be applied to natural flow. An LES approach developed within the TELEMAC-3D open-source software is presented here. After validating the model with in-situ measurements, the model is applied to characterize the flow statistics of the Alderney Race. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2019.0499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2019.0499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 FrancePublisher:MDPI AG Authors: Van Thinh Nguyen; Alina Santa Cruz; Sylvain S. Guillou; Mohamad N. Shiekh Elsouk; +1 AuthorsVan Thinh Nguyen; Alina Santa Cruz; Sylvain S. Guillou; Mohamad N. Shiekh Elsouk; Jérôme Thiébot;doi: 10.3390/en12132478
This study aims to investigate the influence of the current direction on the energy production of a tidal turbines array. It is based on a three-dimensional (3D) numerical simulation of the flow where the turbines are represented with actuator disks. The case study consists of modelling the energy extraction of a small array of turbines (staggered and aligned layouts) placed in the Raz Blanchard (Alderney Race, France). The simulations are performed with hydrodynamic data (current magnitude and direction) representative of a mean tide, with several resistance forces and ambient turbulence intensities. The influence of the current direction on the energy production is highlighted by comparing the simulations forced with the real current direction with those in which the angle of incidence between the incoming flow and the turbine’s axis is “switched off” (bi-directional flow). When the flow is aligned with the turbines’ axis (misalignment “switched off”), the staggered layout produces more than the aligned arrangement. Comparison of the two types of simulations (misalignment switched off or not) shows that the misalignment of the flow around a predominant direction reduces the energy produced by the staggered layout and increases the production of the aligned layout. Furthermore, it suggests that the mean energy produced per machine is almost the same for both layouts. Higher turbulence intensity reduces the positive effect of the directional spreading on the aligned layout production and limits the negative effect on the staggered layout production.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2478/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12132478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/13/2478/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12132478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Thiébot, Jérôme; Guillou, Nicolas; Coles, Daniel; Guillou, Sylvain;International audience ; Estimation of tidal-stream turbine loading and energy yield requires a thorough understanding of the hydrodynamic processes that influence tidal currents over a wide range of timescales. In this study, we focus on the long-term variability of the tidal-stream energy resource associated with the 18.6-year lunar cycle. Three sites in north-western Europe, with strong potential for tidal array development, are considered; the Alderney Race (English Channel), the Fromveur Strait (western Brittany) and the Ramsey Sound (Irish Sea). The investigation relies on harmonic analysis and associated predictions of depth-averaged tidal currents. Results show that the variability in predicted annual power densities is comparable at the three measurement locations. This variability reaches +/- 10% over the 18.6-year lunar cycle, and is mainly associated with M2 nodal modulations which dominate the tidal signal in north-western European shelf seas. Maximum and minimum power density occur in 2015 and 2024, respectively. 2015 is characterized by (i) reduced spring-neap variabilities and diurnal inequalities of tidal currents, and (ii) increased tidal asymmetries (between peak ebb and flood), whereas 2024 shows reverse effects. This cycle also influences the annual maximum/mean current magnitudes. The differences in maximum speeds between 2015 and 2024 are of 0.16–0.17 m/s at the three sites, which represents 4-5% of the peak speeds. The simple approach considered here may be applied in broader locations as a preliminary assessment of the long-term variability of the available tidal stream energy resource. The modulations predicted from harmonic analysis are finally expected to be on the high side of the forecasting range. Indeed, the results of an 18-year numerical simulation performed on the Alderney Race suggested a reduced effect of the 18.6-year lunar cycle on the resource.
Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apor.2022.103091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Normandie Université... arrow_drop_down Normandie Université: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apor.2022.103091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 FrancePublisher:MDPI AG Authors: Nasteho Djama Dirieh; Jérôme Thiébot; Sylvain Guillou; Nicolas Guillou;doi: 10.3390/en15103475
Tidal turbines are located in shallow water depths in comparison to their dimensions (15 m-diameter turbines in 40 m depths, typically). Constrained vertically by the water depth and laterally by neighbouring turbines, the flow within a tidal farm is subjected to blockage effects that influence the performance of individual devices. The Betz limit (which is the maximum power extractable from an unconstrained flow) can, therefore, be exceeded as demonstrated by Garrett and Cummins. Thus, beyond a significant blockage ratio, blockage effects should be considered when assessing the energy production of a tidal farm. The actuator disk method is particularly suited to simulate the flow field within an array of turbines under realistic tidal flow conditions. However, the implementation of actuator disks in coastal numerical models relies on relationships that neglect the blockage effects on the thrust and power of devices. We propose here an actuator disk formulation corrected to integrate these effects. This modified formulation, based on the model of Whelan et al., is integrated into a regional implementation of a three-dimensional model Telemac3D targeted towards the Alderney Race (English Channel). The method is applied to two hypothetical tidal farms with aligned and staggered arrangements, respectively. Blockage corrections of the thrust and power coefficients are found to have counterbalanced effects on the array production. Thrust correction results in a noticeable flow reduction within the array. However, the associated decrease of the array production is counterbalanced by the increase of the turbine power coefficient. Blockage corrections were, therefore, found to result in a slight increase, by 3%, of the array production over a mean spring tidal cycle.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3475/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3475/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:MDPI AG Authors: Sylvain Guillou; Eric Bibeau;doi: 10.3390/en16073204
Tidal turbines generate energy from tidal currents [...]
Normandie Université... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Normandie Université... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu