- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 FrancePublisher:Springer Science and Business Media LLC Morat, Fabien; Wicquart, Jérémy; Schiettekatte, Nina; de Sinéty, Guillemette; Bienvenu, Jean; Casey, Jordan; Brandl, Simon; Vii, Jason; Carlot, Jérémy; Degregori, Samuel; Mercière, Alexandre; Fey, Pauline; Galzin, René; Letourneur, Yves; Sasal, Pierre; Parravicini, Valeriano;AbstractSomatic growth is a critical biological trait for organismal, population, and ecosystem-level processes. Due to its direct link with energetic demands, growth also represents an important parameter to estimate energy and nutrient fluxes. For marine fishes, growth rate information is most frequently derived from sagittal otoliths, and most of the available data stems from studies on temperate species that are targeted by commercial fisheries. Although the analysis of otoliths is a powerful tool to estimate individual growth, the time-consuming nature of otolith processing is one barrier for collection of comprehensive datasets across multiple species. This is especially true for coral reef fishes, which are extremely diverse. Here, we provide back-calculated size-at-age estimates (including measures of uncertainty) based on sagittal otoliths from 710 individuals belonging to 45 coral reef fish species from French Polynesia. In addition, we provide Von Bertalanffy growth parameters which are useful to predict community level biomass production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00711-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00711-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, France, Chile, Saudi Arabia, Australia, Australia, Saudi Arabia, France, France, FrancePublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1FCT| LA 1Schiettekatte, Nina; Brandl, Simon; Casey, Jordan; Graham, Nicholas; Barneche, Diego; Burkepile, Deron; Allgeier, Jacob; Arias-Gonzaléz, Jesús; Edgar, Graham; Ferreira, Carlos; Floeter, Sergio; Friedlander, Alan; Green, Alison; Kulbicki, Michel; Letourneur, Yves; Luiz, Osmar; Mercière, Alexandre; Morat, Fabien; Munsterman, Katrina; Rezende, Enrico; Rodríguez‐zaragoza, Fabian; Stuart-Smith, Rick; Vigliola, Laurent; Villéger, Sébastien; Parravicini, Valeriano;Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass. This lack of quantitative assessments of multiple process-based ecosystem functions hinders local and regional conservation efforts. Here we combine global coral reef fish community surveys and bioenergetic models to quantify five key ecosystem functions mediated by coral reef fishes. We show that functions exhibit critical trade-offs driven by varying community structures, such that no community can maximize all functions. Furthermore, functions are locally dominated by few species, but the identity of dominant species substantially varies at the global scale. In fact, half of the 1,110 species in our dataset are functionally dominant in at least one location. Our results reinforce the need for a nuanced, locally tailored approach to coral reef conservation that considers multiple ecological functions beyond the effect of standing stock biomass.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/170330/1/Schiettekatte_global_functions_Accepted_MS.pdfData sources: Lancaster EPrintsInstitut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://unc.hal.science/hal-03637887Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01710-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/170330/1/Schiettekatte_global_functions_Accepted_MS.pdfData sources: Lancaster EPrintsInstitut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://unc.hal.science/hal-03637887Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01710-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 FrancePublisher:Proceedings of the National Academy of Sciences Funded by:ANR | REEFLUXANR| REEFLUXChloé Pozas-Schacre; Jordan M. Casey; Simon J. Brandl; Michel Kulbicki; Mireille Harmelin-Vivien; Giovanni Strona; Valeriano Parravicini;Significance Species loss can weaken the trophic interactions that underpin ecosystem functioning. Coral reefs are the world’s most diverse marine ecosystem, harboring interaction networks of extraordinary complexity. We show that, despite this complexity, global coral reef food webs are governed by a suite of highly consistent energetic pathways, regardless of regional differences in biodiversity. All networks are characterized by species with narrow dietary preferences, arranged into distinct groups of predator–prey interactions. These characteristics suggest that coral reef food webs are robust to the loss of prey resources but vulnerable to local extinctions of consumer species.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2100966118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2100966118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 AustraliaPublisher:Springer Science and Business Media LLC Simon J. Brandl; Jacob L. Johansen; Jordan M. Casey; Luke Tornabene; Renato A. Morais; John A. Burt;AbstractTropical ectotherms are hypothesized to be vulnerable to environmental changes, but cascading effects of organismal tolerances on the assembly and functioning of reef fish communities are largely unknown. Here, we examine differences in organismal traits, assemblage structure, and productivity of cryptobenthic reef fishes between the world’s hottest, most extreme coral reefs in the southern Arabian Gulf and the nearby, but more environmentally benign, Gulf of Oman. We show that assemblages in the Arabian Gulf are half as diverse and less than 25% as abundant as in the Gulf of Oman, despite comparable benthic composition and live coral cover. This pattern appears to be driven by energetic deficiencies caused by responses to environmental extremes and distinct prey resource availability rather than absolute thermal tolerances. As a consequence, production, transfer, and replenishment of biomass through cryptobenthic fish assemblages is greatly reduced on Earth’s hottest coral reefs. Extreme environmental conditions, as predicted for the end of the 21st century, could thus disrupt the community structure and productivity of a critical functional group, independent of live coral loss.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41467-020-17731-2Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17731-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41467-020-17731-2Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17731-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, ItalyPublisher:Wiley Alexandre Mercière; Alessio Rovere; Jérémy Carlot; Diego R. Barneche; Simon J. Brandl; Valeriano Parravicini; Laetitia Hédouin; Ulisse Cardini; Hunter S. Lenihan; Jordan M. Casey; Jordan M. Casey; Mohsen Kayal; Mehdi Adjeroud; Mehdi Adjeroud; Benoit Espiau;AbstractSea‐level rise is predicted to cause major damage to tropical coastlines. While coral reefs can act as natural barriers for ocean waves, their protection hinges on the ability of scleractinian corals to produce enough calcium carbonate (CaCO3) to keep up with rising sea levels. As a consequence of intensifying disturbances, coral communities are changing rapidly, potentially reducing community‐level CaCO3 production. By combining colony‐level physiology and long‐term monitoring data, we show that reefs recovering from major disturbances can produce 40% more CaCO3 than currently estimated due to the disproportionate contribution of juvenile corals. However, the buffering effect of highly productive juvenile corals is compromised by recruitment failures, which have been more frequently observed after large‐scale, repeated bleaching events. While the size structure of corals can bolster a critical ecological function on reefs, climate change impacts on recruitment may undermine this buffering effect, thus further compromising the persistence of reefs and their provision of important ecosystem services.
Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | ARC Centres of Excellence..., ANR | REEFLUX, NSERCARC| ARC Centres of Excellences - Grant ID: CE140100020 ,ANR| REEFLUX ,NSERCCarole C. Baldwin; Jordan M. Casey; Jordan M. Casey; Isabelle M. Côté; Nina M. D. Schiettekatte; Christopher H. R. Goatley; Valeriano Parravicini; David R. Bellwood; Renato A. Morais; Simon J. Brandl; Simon J. Brandl; Luke Tornabene;Little fish make a big contributionCoral reefs represent one of the most biodiverse and rich ecosystems. Such richness conjures up images of coral heads and large colorful reef fishes. Brandlet al.show, however, that one of the most striking and important parts of the reef ecosystem is almost never seen (see the Perspective by Riginos and Leis). Small cryptobenthic fish, like blennies, make up nearly 40% of reef fish biodiversity. Furthermore, the majority of cryptobenthic fish larvae settle locally, rather than being widely dispersed, and have rapid turnover rates. Such high diversity and densities could thus provide the biomass base for larger, better-known reef fish.Science, this issue p.1189; see also p.1128
Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav3384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu173 citations 173 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav3384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Nina M. D. Schiettekatte; Simon J. Brandl; Simon J. Brandl; Carole C. Baldwin; Valeriano Parravicini; Isabelle M. Côté; Jordan M. Casey; Jordan M. Casey; Renato A. Morais; David R. Bellwood; Luke Tornabene; Christopher H. R. Goatley;Allgeier and Cline suggest that our model overestimates the contributions of cryptobenthic fishes to coral reef functioning. However, their 20-year model ignores the basic biological limits of population growth. If incorporated, cryptobenthic contributions to consumed fish biomass remain high (20 to 70%). Disturbance cycles and uncertainties surrounding the fate of large fishes on decadal scales further demonstrate the important role of cryptobenthic fishes.
Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaz1301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaz1301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 FrancePublisher:Springer Science and Business Media LLC Morat, Fabien; Wicquart, Jérémy; Schiettekatte, Nina; de Sinéty, Guillemette; Bienvenu, Jean; Casey, Jordan; Brandl, Simon; Vii, Jason; Carlot, Jérémy; Degregori, Samuel; Mercière, Alexandre; Fey, Pauline; Galzin, René; Letourneur, Yves; Sasal, Pierre; Parravicini, Valeriano;AbstractSomatic growth is a critical biological trait for organismal, population, and ecosystem-level processes. Due to its direct link with energetic demands, growth also represents an important parameter to estimate energy and nutrient fluxes. For marine fishes, growth rate information is most frequently derived from sagittal otoliths, and most of the available data stems from studies on temperate species that are targeted by commercial fisheries. Although the analysis of otoliths is a powerful tool to estimate individual growth, the time-consuming nature of otolith processing is one barrier for collection of comprehensive datasets across multiple species. This is especially true for coral reef fishes, which are extremely diverse. Here, we provide back-calculated size-at-age estimates (including measures of uncertainty) based on sagittal otoliths from 710 individuals belonging to 45 coral reef fish species from French Polynesia. In addition, we provide Von Bertalanffy growth parameters which are useful to predict community level biomass production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00711-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00711-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, France, Chile, Saudi Arabia, Australia, Australia, Saudi Arabia, France, France, FrancePublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1FCT| LA 1Schiettekatte, Nina; Brandl, Simon; Casey, Jordan; Graham, Nicholas; Barneche, Diego; Burkepile, Deron; Allgeier, Jacob; Arias-Gonzaléz, Jesús; Edgar, Graham; Ferreira, Carlos; Floeter, Sergio; Friedlander, Alan; Green, Alison; Kulbicki, Michel; Letourneur, Yves; Luiz, Osmar; Mercière, Alexandre; Morat, Fabien; Munsterman, Katrina; Rezende, Enrico; Rodríguez‐zaragoza, Fabian; Stuart-Smith, Rick; Vigliola, Laurent; Villéger, Sébastien; Parravicini, Valeriano;Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass. This lack of quantitative assessments of multiple process-based ecosystem functions hinders local and regional conservation efforts. Here we combine global coral reef fish community surveys and bioenergetic models to quantify five key ecosystem functions mediated by coral reef fishes. We show that functions exhibit critical trade-offs driven by varying community structures, such that no community can maximize all functions. Furthermore, functions are locally dominated by few species, but the identity of dominant species substantially varies at the global scale. In fact, half of the 1,110 species in our dataset are functionally dominant in at least one location. Our results reinforce the need for a nuanced, locally tailored approach to coral reef conservation that considers multiple ecological functions beyond the effect of standing stock biomass.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/170330/1/Schiettekatte_global_functions_Accepted_MS.pdfData sources: Lancaster EPrintsInstitut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://unc.hal.science/hal-03637887Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01710-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2022 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/170330/1/Schiettekatte_global_functions_Accepted_MS.pdfData sources: Lancaster EPrintsInstitut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://unc.hal.science/hal-03637887Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerNature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01710-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 FrancePublisher:Proceedings of the National Academy of Sciences Funded by:ANR | REEFLUXANR| REEFLUXChloé Pozas-Schacre; Jordan M. Casey; Simon J. Brandl; Michel Kulbicki; Mireille Harmelin-Vivien; Giovanni Strona; Valeriano Parravicini;Significance Species loss can weaken the trophic interactions that underpin ecosystem functioning. Coral reefs are the world’s most diverse marine ecosystem, harboring interaction networks of extraordinary complexity. We show that, despite this complexity, global coral reef food webs are governed by a suite of highly consistent energetic pathways, regardless of regional differences in biodiversity. All networks are characterized by species with narrow dietary preferences, arranged into distinct groups of predator–prey interactions. These characteristics suggest that coral reef food webs are robust to the loss of prey resources but vulnerable to local extinctions of consumer species.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2100966118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2100966118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 AustraliaPublisher:Springer Science and Business Media LLC Simon J. Brandl; Jacob L. Johansen; Jordan M. Casey; Luke Tornabene; Renato A. Morais; John A. Burt;AbstractTropical ectotherms are hypothesized to be vulnerable to environmental changes, but cascading effects of organismal tolerances on the assembly and functioning of reef fish communities are largely unknown. Here, we examine differences in organismal traits, assemblage structure, and productivity of cryptobenthic reef fishes between the world’s hottest, most extreme coral reefs in the southern Arabian Gulf and the nearby, but more environmentally benign, Gulf of Oman. We show that assemblages in the Arabian Gulf are half as diverse and less than 25% as abundant as in the Gulf of Oman, despite comparable benthic composition and live coral cover. This pattern appears to be driven by energetic deficiencies caused by responses to environmental extremes and distinct prey resource availability rather than absolute thermal tolerances. As a consequence, production, transfer, and replenishment of biomass through cryptobenthic fish assemblages is greatly reduced on Earth’s hottest coral reefs. Extreme environmental conditions, as predicted for the end of the 21st century, could thus disrupt the community structure and productivity of a critical functional group, independent of live coral loss.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41467-020-17731-2Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17731-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41467-020-17731-2Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-17731-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, ItalyPublisher:Wiley Alexandre Mercière; Alessio Rovere; Jérémy Carlot; Diego R. Barneche; Simon J. Brandl; Valeriano Parravicini; Laetitia Hédouin; Ulisse Cardini; Hunter S. Lenihan; Jordan M. Casey; Jordan M. Casey; Mohsen Kayal; Mehdi Adjeroud; Mehdi Adjeroud; Benoit Espiau;AbstractSea‐level rise is predicted to cause major damage to tropical coastlines. While coral reefs can act as natural barriers for ocean waves, their protection hinges on the ability of scleractinian corals to produce enough calcium carbonate (CaCO3) to keep up with rising sea levels. As a consequence of intensifying disturbances, coral communities are changing rapidly, potentially reducing community‐level CaCO3 production. By combining colony‐level physiology and long‐term monitoring data, we show that reefs recovering from major disturbances can produce 40% more CaCO3 than currently estimated due to the disproportionate contribution of juvenile corals. However, the buffering effect of highly productive juvenile corals is compromised by recruitment failures, which have been more frequently observed after large‐scale, repeated bleaching events. While the size structure of corals can bolster a critical ecological function on reefs, climate change impacts on recruitment may undermine this buffering effect, thus further compromising the persistence of reefs and their provision of important ecosystem services.
Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | ARC Centres of Excellence..., ANR | REEFLUX, NSERCARC| ARC Centres of Excellences - Grant ID: CE140100020 ,ANR| REEFLUX ,NSERCCarole C. Baldwin; Jordan M. Casey; Jordan M. Casey; Isabelle M. Côté; Nina M. D. Schiettekatte; Christopher H. R. Goatley; Valeriano Parravicini; David R. Bellwood; Renato A. Morais; Simon J. Brandl; Simon J. Brandl; Luke Tornabene;Little fish make a big contributionCoral reefs represent one of the most biodiverse and rich ecosystems. Such richness conjures up images of coral heads and large colorful reef fishes. Brandlet al.show, however, that one of the most striking and important parts of the reef ecosystem is almost never seen (see the Perspective by Riginos and Leis). Small cryptobenthic fish, like blennies, make up nearly 40% of reef fish biodiversity. Furthermore, the majority of cryptobenthic fish larvae settle locally, rather than being widely dispersed, and have rapid turnover rates. Such high diversity and densities could thus provide the biomass base for larger, better-known reef fish.Science, this issue p.1189; see also p.1128
Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav3384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu173 citations 173 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav3384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Nina M. D. Schiettekatte; Simon J. Brandl; Simon J. Brandl; Carole C. Baldwin; Valeriano Parravicini; Isabelle M. Côté; Jordan M. Casey; Jordan M. Casey; Renato A. Morais; David R. Bellwood; Luke Tornabene; Christopher H. R. Goatley;Allgeier and Cline suggest that our model overestimates the contributions of cryptobenthic fishes to coral reef functioning. However, their 20-year model ignores the basic biological limits of population growth. If incorporated, cryptobenthic contributions to consumed fish biomass remain high (20 to 70%). Disturbance cycles and uncertainties surrounding the fate of large fishes on decadal scales further demonstrate the important role of cryptobenthic fishes.
Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaz1301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaz1301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu