- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024 DenmarkPublisher:American Astronomical Society Funded by:UKRI | SCORE: Supply Chain Optim...UKRI| SCORE: Supply Chain Optimisation for demand Response EfficiencyBingjie 冰洁 Wang 王; Joel Leja; Anna de Graaff; Gabriel B. Brammer; Andrea Weibel; Pieter van Dokkum; Josephine F. W. Baggen; Katherine A. Suess; Jenny E. Greene; Rachel Bezanson; Nikko J. Cleri; Michaela Hirschmann; Ivo Labbé; Jorryt Matthee; Ian McConachie; Rohan P. Naidu; Erica Nelson; Pascal A. Oesch; David J. Setton; Christina C. Williams;Abstract The identification of red, apparently massive galaxies at z > 7 in early James Webb Space Telescope (JWST) photometry suggests a strongly accelerated time line compared to standard models of galaxy growth. A major uncertainty in the interpretation is whether the red colors are caused by evolved stellar populations, dust, or other effects such as emission lines or active galactic nuclei (AGNs). Here we show that three of the massive galaxy candidates at z = 6.7–8.4 have prominent Balmer breaks in JWST/NIRSpec spectroscopy from the RUBIES program. The Balmer breaks demonstrate unambiguously that stellar emission dominates at λ rest = 0.4 μm and require formation histories extending hundreds of millions of years into the past in galaxies only 600–800 Myr after the big bang. Two of the three galaxies also show broad Balmer lines, with Hβ FWHM > 2500 km s−1, suggesting that dust-reddened AGNs contribute to, or even dominate, the spectral energy distributions of these galaxies at λ rest ≳ 0.6 μm. All three galaxies have relatively narrow [O iii] lines, seemingly ruling out a high-mass interpretation if the lines arise in dynamically relaxed, inclined disks. Yet the inferred masses also remain highly uncertain. We model the high-quality spectra using Prospector to decompose the continuum into stellar and AGN components and explore limiting cases in stellar/AGN contribution. This produces a wide range of possible stellar masses, spanning M ⋆ ∼ 109−1011 M ⊙. Nevertheless, all fits suggest a very early and rapid formation, most of which follow with a truncation in star formation. Potential origins and evolutionary tracks for these objects are discussed, from the cores of massive galaxies to low-mass galaxies with overmassive black holes. Intriguingly, we find all of these explanations to be incomplete; deeper and redder data are needed to understand the physics of these systems.
The Astrophysical Jo... arrow_drop_down The Astrophysical Journal LettersArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3847/2041-8213/ad55f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert The Astrophysical Jo... arrow_drop_down The Astrophysical Journal LettersArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3847/2041-8213/ad55f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024 DenmarkPublisher:American Astronomical Society Funded by:ARC | Discovery Early Career Re..., UKRI | RootDetect: Remote Detect..., UKRI | SCORE: Supply Chain Optim...ARC| Discovery Early Career Researcher Award - Grant ID: DE240100136 ,UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,UKRI| SCORE: Supply Chain Optimisation for demand Response EfficiencyBingjie 冰洁 Wang 王; Anna de Graaff; Rebecca L. Davies; Jenny E. Greene; Joel Leja; Gabriel B. Brammer; Andy D. Goulding; Tim B. Miller; Katherine A. Suess; Andrea Weibel; Christina C. Williams; Rachel Bezanson; Leindert A. Boogaard; Nikko J. Cleri; Michaela Hirschmann; Harley Katz; Ivo Labbé; Michael V. Maseda; Jorryt Matthee; Ian McConachie; Rohan P. Naidu; Pascal A. Oesch; Hans-Walter Rix; David J. Setton; Katherine E. Whitaker;Abstract The JWST discovery of “little red dots” (LRDs) is reshaping our picture of the early Universe, yet the physical mechanisms driving their compact size and UV-optical colors remain elusive. Here, we report an unusually bright LRD (z spec = 3.1) observed as part of the RUBIES program. This LRD exhibits broad emission lines (FWHM ∼ 4000 km s−1), a blue UV continuum, a clear Balmer break, and a red continuum sampled out to rest-frame 4 μm with MIRI. We develop a new joint galaxy and active galactic nucleus (AGN) model within the Prospector Bayesian inference framework and perform spectrophotometric modeling using NIRCam, MIRI, and NIRSpec/Prism observations. Our fiducial model reveals a M * ∼ 109 M ⊙ galaxy alongside a dust-reddened AGN driving the optical emission. Explaining the rest-frame optical color as a reddened AGN requires A V ≳ 3, suggesting that a great majority of the accretion disk energy is reradiated as dust emission. Yet, despite clear AGN signatures, we find a surprising lack of hot torus emission, which implies that either the dust emission in this object must be cold, or the red continuum must instead be driven by a massive, evolved stellar population of the host galaxy—seemingly inconsistent with the high-EW broad lines (Hα rest-frame EW ∼ 800 Å). The widths and luminosities of Pa-β, Pa-δ, Pa-γ, and Hα imply a modest black hole mass of M BH ∼ 108 M ⊙. Additionally, we identify a narrow blueshifted He i λ 1.083 μm absorption feature in NIRSpec/G395M spectra, signaling an ionized outflow with kinetic energy up to ∼1% the luminosity of the AGN. The low redshift of RUBIES-BLAGN-1, combined with the depth and richness of the JWST imaging and spectroscopic observations, provides a unique opportunity to build a physical model for these so-far mysterious LRDs, which may prove to be a crucial phase in the early formation of massive galaxies and their supermassive black holes.
The Astrophysical Jo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information Systemhttps://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3847/1538-4357/adc1ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert The Astrophysical Jo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information Systemhttps://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3847/1538-4357/adc1ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024 DenmarkPublisher:American Astronomical Society Funded by:UKRI | SCORE: Supply Chain Optim...UKRI| SCORE: Supply Chain Optimisation for demand Response EfficiencyBingjie 冰洁 Wang 王; Joel Leja; Anna de Graaff; Gabriel B. Brammer; Andrea Weibel; Pieter van Dokkum; Josephine F. W. Baggen; Katherine A. Suess; Jenny E. Greene; Rachel Bezanson; Nikko J. Cleri; Michaela Hirschmann; Ivo Labbé; Jorryt Matthee; Ian McConachie; Rohan P. Naidu; Erica Nelson; Pascal A. Oesch; David J. Setton; Christina C. Williams;Abstract The identification of red, apparently massive galaxies at z > 7 in early James Webb Space Telescope (JWST) photometry suggests a strongly accelerated time line compared to standard models of galaxy growth. A major uncertainty in the interpretation is whether the red colors are caused by evolved stellar populations, dust, or other effects such as emission lines or active galactic nuclei (AGNs). Here we show that three of the massive galaxy candidates at z = 6.7–8.4 have prominent Balmer breaks in JWST/NIRSpec spectroscopy from the RUBIES program. The Balmer breaks demonstrate unambiguously that stellar emission dominates at λ rest = 0.4 μm and require formation histories extending hundreds of millions of years into the past in galaxies only 600–800 Myr after the big bang. Two of the three galaxies also show broad Balmer lines, with Hβ FWHM > 2500 km s−1, suggesting that dust-reddened AGNs contribute to, or even dominate, the spectral energy distributions of these galaxies at λ rest ≳ 0.6 μm. All three galaxies have relatively narrow [O iii] lines, seemingly ruling out a high-mass interpretation if the lines arise in dynamically relaxed, inclined disks. Yet the inferred masses also remain highly uncertain. We model the high-quality spectra using Prospector to decompose the continuum into stellar and AGN components and explore limiting cases in stellar/AGN contribution. This produces a wide range of possible stellar masses, spanning M ⋆ ∼ 109−1011 M ⊙. Nevertheless, all fits suggest a very early and rapid formation, most of which follow with a truncation in star formation. Potential origins and evolutionary tracks for these objects are discussed, from the cores of massive galaxies to low-mass galaxies with overmassive black holes. Intriguingly, we find all of these explanations to be incomplete; deeper and redder data are needed to understand the physics of these systems.
The Astrophysical Jo... arrow_drop_down The Astrophysical Journal LettersArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3847/2041-8213/ad55f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert The Astrophysical Jo... arrow_drop_down The Astrophysical Journal LettersArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3847/2041-8213/ad55f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024 DenmarkPublisher:American Astronomical Society Funded by:ARC | Discovery Early Career Re..., UKRI | RootDetect: Remote Detect..., UKRI | SCORE: Supply Chain Optim...ARC| Discovery Early Career Researcher Award - Grant ID: DE240100136 ,UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,UKRI| SCORE: Supply Chain Optimisation for demand Response EfficiencyBingjie 冰洁 Wang 王; Anna de Graaff; Rebecca L. Davies; Jenny E. Greene; Joel Leja; Gabriel B. Brammer; Andy D. Goulding; Tim B. Miller; Katherine A. Suess; Andrea Weibel; Christina C. Williams; Rachel Bezanson; Leindert A. Boogaard; Nikko J. Cleri; Michaela Hirschmann; Harley Katz; Ivo Labbé; Michael V. Maseda; Jorryt Matthee; Ian McConachie; Rohan P. Naidu; Pascal A. Oesch; Hans-Walter Rix; David J. Setton; Katherine E. Whitaker;Abstract The JWST discovery of “little red dots” (LRDs) is reshaping our picture of the early Universe, yet the physical mechanisms driving their compact size and UV-optical colors remain elusive. Here, we report an unusually bright LRD (z spec = 3.1) observed as part of the RUBIES program. This LRD exhibits broad emission lines (FWHM ∼ 4000 km s−1), a blue UV continuum, a clear Balmer break, and a red continuum sampled out to rest-frame 4 μm with MIRI. We develop a new joint galaxy and active galactic nucleus (AGN) model within the Prospector Bayesian inference framework and perform spectrophotometric modeling using NIRCam, MIRI, and NIRSpec/Prism observations. Our fiducial model reveals a M * ∼ 109 M ⊙ galaxy alongside a dust-reddened AGN driving the optical emission. Explaining the rest-frame optical color as a reddened AGN requires A V ≳ 3, suggesting that a great majority of the accretion disk energy is reradiated as dust emission. Yet, despite clear AGN signatures, we find a surprising lack of hot torus emission, which implies that either the dust emission in this object must be cold, or the red continuum must instead be driven by a massive, evolved stellar population of the host galaxy—seemingly inconsistent with the high-EW broad lines (Hα rest-frame EW ∼ 800 Å). The widths and luminosities of Pa-β, Pa-δ, Pa-γ, and Hα imply a modest black hole mass of M BH ∼ 108 M ⊙. Additionally, we identify a narrow blueshifted He i λ 1.083 μm absorption feature in NIRSpec/G395M spectra, signaling an ionized outflow with kinetic energy up to ∼1% the luminosity of the AGN. The low redshift of RUBIES-BLAGN-1, combined with the depth and richness of the JWST imaging and spectroscopic observations, provides a unique opportunity to build a physical model for these so-far mysterious LRDs, which may prove to be a crucial phase in the early formation of massive galaxies and their supermassive black holes.
The Astrophysical Jo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information Systemhttps://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3847/1538-4357/adc1ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert The Astrophysical Jo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information Systemhttps://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3847/1538-4357/adc1ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu