- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Czech RepublicPublisher:MDPI AG Ireneusz Miciuła; Henryk Wojtaszek; Marek Bazan; Tomasz Janiczek; Bogdan Włodarczyk; Judyta Kabus; Radomir Kana;doi: 10.3390/en13195191
The aim of the article is to present the most important elements to be implemented in the European Union energy policy in the 2030 perspective in the context of sustainable development of the Member States. The solution to the too high emissivity of individual economies in the European Union is the energy mix, which will establish a compromise in the so-called the triad of EU policy goals. This is undoubtedly a current climate challenge for the modern world, which also has a direct impact on the economic situation of EU countries. The basis of the presented considerations and recommendations is a literature review on the subject and a statistical analysis of empirical data of the largest statistical organizations in the EU and the world. The starting point for the analysis is the assessment of the state of the energy sector in the EU. Therefore, the goals and tasks until 2030 result from many conditions of the energy sector. The article provides recommendations for the EU on future climate and energy policy, analysing the practices of member countries empirical and data compiled by the world’s largest organizations and institutions, such as the International Atomic Energy Agency (IAEA), the World Nuclear Association (WNA), Eurostat, and the International Energy Agency (IEA). The strategic goals of the EU climate and energy policy presented in the study show the necessary challenges for the implementation of sustainable development in the analyzed sector, which is the driving force of world economies. The conclusions were presented in accordance with the current economic efficiency of various energy sources and the necessity to seek a compromise among the so-called a triad of goals defined in EU policy.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteDSpace at VSB Technical University of OstravaArticle . 2020 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteDSpace at VSB Technical University of OstravaArticle . 2020 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Łukasz Kuźmiński; Piotr Maśloch; Marek Bazan; Tomasz Janiczek; Krzysztof Halawa; Henryk Wojtaszek; Ireneusz Miciuła; Tomasz Chajduga; Adam Kawecki; Robert Czwartosz; Jakub Stawik;doi: 10.3390/en13123087
Congestion extends the time of the journey for both people and goods. Therefore, transport solutions should be optimized. Management scientists and technical scientists worked together in order to develop a proprietary solution to increase efficiency in terms of productivity improvements for intelligent transport systems. The most fundamental functions of management have been paired with a detailed analysis of city traffic. The authors developed a method for determining the order of vehicles at traffic lights and connected it with vehicle-to-vehicle communication and GPS signals. As a result, a novel method to increase the throughput of intersections is presented. This solution generates a sound signal in order to inform the driver that the preceding car has started moving forward. The proposed solution leads to the shortening of the reaction time of the drivers waiting in a queue. This situation is most common at red lights. Consequently, the traffic simulation shows that the discharge of queues at traffic lights may be quicker by up to 13.5%. Notably, that proposed solution does not require any modification of the infrastructure as well as any additional devices for vehicle-to-infrastructure communication at the road intersections. To conclude, proper implementation of the proposed solution will certainly contribute to efficiency improvements within intelligent transport systems, with the potential to reduce traffic jams.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3087/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3087/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Czech RepublicPublisher:MDPI AG Ireneusz Miciuła; Henryk Wojtaszek; Marek Bazan; Tomasz Janiczek; Bogdan Włodarczyk; Judyta Kabus; Radomir Kana;doi: 10.3390/en13195191
The aim of the article is to present the most important elements to be implemented in the European Union energy policy in the 2030 perspective in the context of sustainable development of the Member States. The solution to the too high emissivity of individual economies in the European Union is the energy mix, which will establish a compromise in the so-called the triad of EU policy goals. This is undoubtedly a current climate challenge for the modern world, which also has a direct impact on the economic situation of EU countries. The basis of the presented considerations and recommendations is a literature review on the subject and a statistical analysis of empirical data of the largest statistical organizations in the EU and the world. The starting point for the analysis is the assessment of the state of the energy sector in the EU. Therefore, the goals and tasks until 2030 result from many conditions of the energy sector. The article provides recommendations for the EU on future climate and energy policy, analysing the practices of member countries empirical and data compiled by the world’s largest organizations and institutions, such as the International Atomic Energy Agency (IAEA), the World Nuclear Association (WNA), Eurostat, and the International Energy Agency (IEA). The strategic goals of the EU climate and energy policy presented in the study show the necessary challenges for the implementation of sustainable development in the analyzed sector, which is the driving force of world economies. The conclusions were presented in accordance with the current economic efficiency of various energy sources and the necessity to seek a compromise among the so-called a triad of goals defined in EU policy.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteDSpace at VSB Technical University of OstravaArticle . 2020 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5191/pdfData sources: Multidisciplinary Digital Publishing InstituteDSpace at VSB Technical University of OstravaArticle . 2020 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Łukasz Kuźmiński; Piotr Maśloch; Marek Bazan; Tomasz Janiczek; Krzysztof Halawa; Henryk Wojtaszek; Ireneusz Miciuła; Tomasz Chajduga; Adam Kawecki; Robert Czwartosz; Jakub Stawik;doi: 10.3390/en13123087
Congestion extends the time of the journey for both people and goods. Therefore, transport solutions should be optimized. Management scientists and technical scientists worked together in order to develop a proprietary solution to increase efficiency in terms of productivity improvements for intelligent transport systems. The most fundamental functions of management have been paired with a detailed analysis of city traffic. The authors developed a method for determining the order of vehicles at traffic lights and connected it with vehicle-to-vehicle communication and GPS signals. As a result, a novel method to increase the throughput of intersections is presented. This solution generates a sound signal in order to inform the driver that the preceding car has started moving forward. The proposed solution leads to the shortening of the reaction time of the drivers waiting in a queue. This situation is most common at red lights. Consequently, the traffic simulation shows that the discharge of queues at traffic lights may be quicker by up to 13.5%. Notably, that proposed solution does not require any modification of the infrastructure as well as any additional devices for vehicle-to-infrastructure communication at the road intersections. To conclude, proper implementation of the proposed solution will certainly contribute to efficiency improvements within intelligent transport systems, with the potential to reduce traffic jams.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3087/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3087/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu