- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, NorwayPublisher:Elsevier BV Funded by:UKRI | Ocean Regulation of Clima..., EC | SO-CHICUKRI| Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) ,EC| SO-CHICM. Muelbert; Susie M. Grant; Simeon L. Hill; Bjørn A. Krafft; Michael P. Meredith; Philip N. Trathan; Philip R. Hollyman; John Turner; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Martin Sommerkorn; Rachel D. Cavanagh; Eugene J. Murphy;handle: 11250/2982442
Abstract Southern Ocean marine ecosystems are highly vulnerable to climate-driven change, the impacts of which must be factored into conservation and management. The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) is aware of the urgent need to develop climate-responsive options within its ecosystem approach to management. However, limited capacity as well as political differences have meant that little progress has been made. Strengthening scientific information flow to inform CCAMLR’s decision-making on climate change may help to remove some of these barriers. On this basis, this study encourages the utilisation of outputs from the United Nations’ Intergovernmental Panel on Climate Change (IPCC). The IPCC’s 2019 Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) constitutes the most rigorous and up-to-date assessment of how oceans and the cryosphere are changing, how they are projected to change, and the consequences of those changes, together with a range of response options. To assist CCAMLR to focus on what is most useful from this extensive global report, SROCC findings that have specific relevance to the management of Southern Ocean ecosystems are extracted and summarised here. These findings are translated into recommendations to CCAMLR, emphasising the need to reduce and manage the risks that climate change presents to harvested species and the wider ecosystem of which they are part. Improved linkages between IPCC, CCAMLR and other relevant bodies may help overcome existing impediments to progress, enabling climate change to become fully integrated into CCAMLR’s policy and decision-making.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.ma...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2021.104589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.ma...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2021.104589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, Australia, United KingdomPublisher:Frontiers Media SA Funded by:ARC | Australian Laureate Fello...ARC| Australian Laureate Fellowships - Grant ID: FL160100131Simeon L. Hill; Eugene J. Murphy; Rowan Trebilco; Rowan Trebilco; Kevin A. Hughes; Svenja Halfter; David K. A. Barnes; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Susie M. Grant; Michael P. Meredith; Rachel D. Cavanagh;The Southern Ocean supports ecosystem services that are important on a global scale. Climate change and human activities (tourism, fishing, and research) will affect both the demand for, and the provision of, these services into the future. Here we synthesize recent assessments of the current status and expected future climate-driven changes in Southern Ocean ecosystems and evaluate the potential consequences of these changes for the provision of ecosystem services. We explore in detail three key services (the ‘blue carbon’ pathway, the Antarctic krill fishery, and Antarctic tourism), tracing the consequences of climate change from physical drivers through biological impacts to the benefits to humans. We consider potential non-climatic drivers of change, current and future demands for the services, and the main global and regional policy frameworks that could be used to manage risks to the provision of these services in a changing climate. We also develop a formal representation of the network of interactions between the suite of potential drivers and the suite of services, providing a framework to capture the complexity of this network and its embedded feedback loops. Increased consideration of the linkages and feedbacks between drivers and ecosystem services will be required to underpin robust management responses into the future.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Public Library of Science (PLoS) Authors: Haque, Alifa Bintha; Cavanagh, Rachel D.; Seddon, Nathalie;Sharks and rays are at risk of extinction globally. This reflects low resilience to increasing fishing pressure, exacerbated by habitat loss, climate change, increasing value in a trade and inadequate information leading to limited conservation actions. Artisanal fisheries in the Bay of Bengal of Bangladesh contribute to the high levels of global fishing pressure on elasmobranchs. However, it is one of the most data-poor regions of the world, and the diversity, occurrence and conservation needs of elasmobranchs in this region have not been adequately assessed. This study evaluated elasmobranch diversity, species composition, catch and trade within the artisanal fisheries to address this critical knowledge gap. Findings show that elasmobranch diversity in Bangladesh has previously been underestimated. In this study, over 160000 individual elasmobranchs were recorded through landing site monitoring, comprising 88 species (30 sharks and 58 rays) within 20 families and 35 genera. Of these, 54 are globally threatened according to the IUCN Red List of Threatened Species, with ten species listed as Critically Endangered and 22 species listed as Endangered. Almost 98% juvenile catch (69–99% for different species) for large species sand a decline in numbers of large individuals were documented, indicating unsustainable fisheries. Several previously common species were rarely landed, indicating potential population declines. The catch pattern showed seasonality and, in some cases, gear specificity. Overall, Bangladesh was found to be a significant contributor to shark and ray catches and trade in the Bay of Bengal region. Effective monitoring was not observed at the landing sites or processing centres, despite 29 species of elasmobranchs being protected by law, many of which were frequently landed. On this basis, a series of recommendations were provided for improving the conservation status of the elasmobranchs in this region. These include the need for improved taxonomic research, enhanced monitoring of elasmobranch stocks, and the highest protection level for threatened taxa. Alongside political will, enhancing national capacity to manage and rebuild elasmobranch stocks, coordinated regional management measures are essential.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2021License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0256146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2021License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0256146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, FrancePublisher:Elsevier BV Murphy, E.J.; Hofmann, E.E.; Watkins, J.L.; Johnston, N.M.; Piñones, A.; Ballerini, T.; Hill, S.L.; Trathan, P.N.; Tarling, G.A.; Cavanagh, R.A.; Young, E.F.; Thorpe, S.E.; Fretwell, P.;The ocean ecosystems around the west Antarctic Peninsula and South Georgia are two of the best described regional ecosystems of the Southern Ocean. They therefore provide a useful basis for developing comparative analyses of ocean ecosystems around the Antarctic. There are clear and expected differences in seasonality and species composition between the two ecosystems, but these mask an underlying similarity in ecosystem structure and function. This similarity results from the two ecosystems being part of a continuum, from more ice covered regions in the south to open water regions in the north. Within this continuum the major factors affecting ecosystem structure and function are the sea ice, the biogeochemical conditions and the connectivity generated by the flow of the Antarctic Circumpolar Current. Antarctic krill are central to the food web in both ecosystems, but the other species of plankton and predators present are different. These different species provide alternative pathways of energy transfer from primary production to the highest trophic levels. The relative dominance of these species can provide indicators of change in ecosystem structure and function. Both ecosystems are changing as a result of physically and biologically driven processes, and the ecological responses being observed are complex and variable across different species and within the two regions. Species in parts of the northern Antarctic Peninsula are being replaced by species that currently dominate farther north in more oceanic areas such as at South Georgia. The similarity of structure and strong connectivity, mean that projections of future change will require generic models of these ecosystems that can encompass changes in structure and function within a connected continuum from ice covered to open water in winter.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverJournal of Marine SystemsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jmarsys.2012.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverJournal of Marine SystemsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jmarsys.2012.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Portugal, United Kingdom, Australia, United States, Australia, United States, NorwayPublisher:Frontiers Media SA Funded by:FCT | MARE - Marine and Environ..., UKRI | Coordinating Internationa...FCT| MARE - Marine and Environmental Sciences Centre ,UKRI| Coordinating International Research on Southern Ocean Ecosystems: Implementation of the ICED ProgrammeJennifer A. Jackson; Rachel D. Cavanagh; Stuart Corney; Iain J. Staniland; José C. Xavier; José C. Xavier; Claire M. Waluda; Andrew J. Constable; Andrew J. Constable; Nadine M. Johnston; John Turner; Dieter Wolf-Gladrow; Eileen E. Hofmann; Walker O. Smith; Daniel P. Costa; Richard G. J. Bellerby; Richard G. J. Bellerby; Eugene J. Murphy; Cheryl A. Knowland; Thomas J. Bracegirdle;handle: 11250/2507064 , 10316/108190
Increasing concern about the impacts of climate change on ecosystems is prompting ecologists and ecosystem managers to seek reliable projections of physical drivers of change. The use of global climate models in ecology is growing, although drawing ecologically meaningful conclusions can be problematic. The expertise required to access and interpret output from climate and earth system models is hampering progress in utilizing them most effectively to determine the wider implications of climate change. To address this issue, we present a joint approach between climate scientists and ecologists that explores key challenges and opportunities for progress. As an exemplar, our focus is the Southern Ocean, notable for significant change with global implications, and on sea ice, given its crucial role in this dynamic ecosystem. We combined perspectives to evaluate the representation of sea ice in global climate models. With an emphasis on ecologically-relevant criteria (sea ice extent and seasonality) we selected a subset of eight models that reliably reproduce extant sea ice distributions. While the model subset shows a similar mean change to the full ensemble in sea ice extent (approximately 50% decline in winter and 30% decline in summer), there is a marked reduction in the range. This improved the precision of projected future sea ice distributions by approximately one third, and means they are more amenable to ecological interpretation. We conclude that careful multidisciplinary evaluation of climate models, in conjunction with ongoing modeling advances, should form an integral part of utilizing model output.
Frontiers in Marine ... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2017License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/207Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2017.00308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2017License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/207Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2017.00308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, United Kingdom, United Kingdom, Australia, Portugal, AustraliaPublisher:Frontiers Media SA Funded by:UKRI | Isotopic characterisation...UKRI| Isotopic characterisation of nutrient dynamics and UCDW behaviour in the west Antarctic Peninsula sea ice environmentEugene J. Murphy; Nadine M. Johnston; Eileen E. Hofmann; Richard A. Phillips; Jennifer A. Jackson; Andrew J. Constable; Andrew J. Constable; Sian F. Henley; Jessica Melbourne-Thomas; Rowan Trebilco; Rachel D. Cavanagh; Geraint A. Tarling; Ryan A. Saunders; David K. A. Barnes; Daniel P. Costa; Stuart P. Corney; Stuart P. Corney; Ceridwen I. Fraser; Juan Höfer; Juan Höfer; Kevin A. Hughes; Chester J. Sands; Sally E. Thorpe; Philip N. Trathan; José C. Xavier; José C. Xavier;Southern Ocean ecosystems are globally important. Processes in the Antarctic atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric and oceanic systems. Southern Ocean biogeochemistry has also been shown to have global importance. In contrast, ocean ecological processes are often seen as largely separate from the rest of the global system. In this paper, we consider the degree of ecological connectivity at different trophic levels, linking Southern Ocean ecosystems with the global ocean, and their importance not only for the regional ecosystem but also the wider Earth system. We also consider the human system connections, including the role of Southern Ocean ecosystems in supporting society, culture, and economy in many nations, influencing public and political views and hence policy. Rather than Southern Ocean ecosystems being defined by barriers at particular oceanic fronts, ecological changes are gradual due to cross-front exchanges involving oceanographic processes and organism movement. Millions of seabirds and hundreds of thousands of cetaceans move north out of polar waters in the austral autumn interacting in food webs across the Southern Hemisphere, and a few species cross the equator. A number of species migrate into the east and west ocean-basin boundary current and continental shelf regions of the major southern continents. Human travel in and out of the Southern Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors. These operations arise from many nations, particularly in the Northern Hemisphere, and are important in local communities as well as national economic, scientific, and political activities. As a result of the extensive connectivity, future changes in Southern Ocean ecosystems will have consequences throughout the Earth system, affecting ecosystem services with socio-economic impacts throughout the world. The high level of connectivity also means that changes and policy decisions in marine ecosystems outside the Southern Ocean have consequences for ecosystems south of the Antarctic Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is critical for interpreting current change, projecting future change impacts, and identifying integrated strategies for conserving and managing both the Southern Ocean and the broader Earth system.
NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United Kingdom, United Kingdom, Australia, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | TRIMEC| TRIMWildan Ghiffary; Kristen L. Wilson; Derek P. Tittensor; Derek P. Tittensor; Boris Worm; Patrick N. Halpin; Daniel G. Boyce; Daniel C. Dunn; Daniel C. Dunn; Susie M. Grant; Naomi Kingston; Aurelie Cosandey-Godin; Mike Harfoot; Elizabeth Mcleod; Guillermo Ortuño Crespo; Maria Beger; Maria Beger; Bethan Christine O'Leary; Bethan Christine O'Leary; Jennifer McGowan; Kristina Boerder; Ryan R. E. Stanley; Rachel D. Cavanagh; Laurenne Schiller; Nicholas W. Jeffery; Susan G. Heaslip; Chris McOwen; Heike K. Lotze; Maxine C. Westhead; Lee Hannah;We evaluate the extent of climate change adaptation in the global protected seascape, and identify ways to further advance it.
CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aay9969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 159 citations 159 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aay9969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, United StatesPublisher:The Royal Society Funded by:NSF | Collaborative Research: W..., UKRI | Coordinating Internationa..., UKRI | Integrating Macroecology ... +1 projectsNSF| Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea ,UKRI| Coordinating International Research on Southern Ocean Ecosystems: Implementation of the ICED Programme ,UKRI| Integrating Macroecology and Modelling to Elucidate Regulation of Services from Ecosystems (IMMERSE) ,NSF| Collaborative Research: Impact of Mesoscale Processes on Iron Supply and Phytoplankton Dynamics in the Ross SeaMurphy, Eugene J.; Cavanagh, Rachel D.; Drinkwater, Ken F.; Grant, Susie M.; Heymans, J.J.; Hofmann, Eileen E.; Hunt, George L.; Johnston, Nadine M.;The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs.
NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/514828/1/Murphy.pdfData sources: NERC Open Research ArchiveOld Dominion University: ODU Digital CommonsArticle . 2016License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/230Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/6md5z9jmData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1646&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 97 citations 97 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/514828/1/Murphy.pdfData sources: NERC Open Research ArchiveOld Dominion University: ODU Digital CommonsArticle . 2016License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/230Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/6md5z9jmData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1646&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:American Geophysical Union (AGU) Funded by:UKRI | Retreat of Southern Hemis...UKRI| Retreat of Southern Hemisphere Sea Ice, 130 000 to 116 000 years BPJohn Turner; Maria Vittoria Guarino; Jack Arnatt; Babula Jena; Gareth J. Marshall; Tony Phillips; C. C. Bajish; Kyle Clem; Zhaomin Wang; Tom Andersson; Eugene J. Murphy; Rachel Cavanagh;doi: 10.1029/2020gl087127
AbstractIn Austral summer 2016/2017, the sea ice extent (SIE) in the Weddell Sea dropped to a near‐record value in the satellite era (1.88 × 106 km2), a large negative seasonal anomaly that persisted in an unprecedented fashion for the following three summers. Various atmospheric and oceanic factors played a part in the change. Ice loss started in September 2016 when the northern Weddell Sea experienced westerly winds of record strength, advecting multiyear sea ice from the region. In late 2016, a polynya over Maud Rise contributed to low SIE over the eastern Weddell Sea. With extensive areas of open water early in the summer, upper ocean temperatures increased by ~0.5°C, with the anomalies persisting in subsequent years. The reappearance of the Maud Rise polynya in 2017, high ocean temperatures, and storms of record depth kept the summer SIE low.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl087127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl087127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, NorwayPublisher:Elsevier BV Funded by:UKRI | Ocean Regulation of Clima..., EC | SO-CHICUKRI| Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) ,EC| SO-CHICM. Muelbert; Susie M. Grant; Simeon L. Hill; Bjørn A. Krafft; Michael P. Meredith; Philip N. Trathan; Philip R. Hollyman; John Turner; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Martin Sommerkorn; Rachel D. Cavanagh; Eugene J. Murphy;handle: 11250/2982442
Abstract Southern Ocean marine ecosystems are highly vulnerable to climate-driven change, the impacts of which must be factored into conservation and management. The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) is aware of the urgent need to develop climate-responsive options within its ecosystem approach to management. However, limited capacity as well as political differences have meant that little progress has been made. Strengthening scientific information flow to inform CCAMLR’s decision-making on climate change may help to remove some of these barriers. On this basis, this study encourages the utilisation of outputs from the United Nations’ Intergovernmental Panel on Climate Change (IPCC). The IPCC’s 2019 Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) constitutes the most rigorous and up-to-date assessment of how oceans and the cryosphere are changing, how they are projected to change, and the consequences of those changes, together with a range of response options. To assist CCAMLR to focus on what is most useful from this extensive global report, SROCC findings that have specific relevance to the management of Southern Ocean ecosystems are extracted and summarised here. These findings are translated into recommendations to CCAMLR, emphasising the need to reduce and manage the risks that climate change presents to harvested species and the wider ecosystem of which they are part. Improved linkages between IPCC, CCAMLR and other relevant bodies may help overcome existing impediments to progress, enabling climate change to become fully integrated into CCAMLR’s policy and decision-making.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.ma...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2021.104589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.ma...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2021.104589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, Australia, United KingdomPublisher:Frontiers Media SA Funded by:ARC | Australian Laureate Fello...ARC| Australian Laureate Fellowships - Grant ID: FL160100131Simeon L. Hill; Eugene J. Murphy; Rowan Trebilco; Rowan Trebilco; Kevin A. Hughes; Svenja Halfter; David K. A. Barnes; Jess Melbourne-Thomas; Jess Melbourne-Thomas; Susie M. Grant; Michael P. Meredith; Rachel D. Cavanagh;The Southern Ocean supports ecosystem services that are important on a global scale. Climate change and human activities (tourism, fishing, and research) will affect both the demand for, and the provision of, these services into the future. Here we synthesize recent assessments of the current status and expected future climate-driven changes in Southern Ocean ecosystems and evaluate the potential consequences of these changes for the provision of ecosystem services. We explore in detail three key services (the ‘blue carbon’ pathway, the Antarctic krill fishery, and Antarctic tourism), tracing the consequences of climate change from physical drivers through biological impacts to the benefits to humans. We consider potential non-climatic drivers of change, current and future demands for the services, and the main global and regional policy frameworks that could be used to manage risks to the provision of these services in a changing climate. We also develop a formal representation of the network of interactions between the suite of potential drivers and the suite of services, providing a framework to capture the complexity of this network and its embedded feedback loops. Increased consideration of the linkages and feedbacks between drivers and ecosystem services will be required to underpin robust management responses into the future.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.615214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Public Library of Science (PLoS) Authors: Haque, Alifa Bintha; Cavanagh, Rachel D.; Seddon, Nathalie;Sharks and rays are at risk of extinction globally. This reflects low resilience to increasing fishing pressure, exacerbated by habitat loss, climate change, increasing value in a trade and inadequate information leading to limited conservation actions. Artisanal fisheries in the Bay of Bengal of Bangladesh contribute to the high levels of global fishing pressure on elasmobranchs. However, it is one of the most data-poor regions of the world, and the diversity, occurrence and conservation needs of elasmobranchs in this region have not been adequately assessed. This study evaluated elasmobranch diversity, species composition, catch and trade within the artisanal fisheries to address this critical knowledge gap. Findings show that elasmobranch diversity in Bangladesh has previously been underestimated. In this study, over 160000 individual elasmobranchs were recorded through landing site monitoring, comprising 88 species (30 sharks and 58 rays) within 20 families and 35 genera. Of these, 54 are globally threatened according to the IUCN Red List of Threatened Species, with ten species listed as Critically Endangered and 22 species listed as Endangered. Almost 98% juvenile catch (69–99% for different species) for large species sand a decline in numbers of large individuals were documented, indicating unsustainable fisheries. Several previously common species were rarely landed, indicating potential population declines. The catch pattern showed seasonality and, in some cases, gear specificity. Overall, Bangladesh was found to be a significant contributor to shark and ray catches and trade in the Bay of Bengal region. Effective monitoring was not observed at the landing sites or processing centres, despite 29 species of elasmobranchs being protected by law, many of which were frequently landed. On this basis, a series of recommendations were provided for improving the conservation status of the elasmobranchs in this region. These include the need for improved taxonomic research, enhanced monitoring of elasmobranch stocks, and the highest protection level for threatened taxa. Alongside political will, enhancing national capacity to manage and rebuild elasmobranch stocks, coordinated regional management measures are essential.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2021License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0256146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2021License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0256146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, FrancePublisher:Elsevier BV Murphy, E.J.; Hofmann, E.E.; Watkins, J.L.; Johnston, N.M.; Piñones, A.; Ballerini, T.; Hill, S.L.; Trathan, P.N.; Tarling, G.A.; Cavanagh, R.A.; Young, E.F.; Thorpe, S.E.; Fretwell, P.;The ocean ecosystems around the west Antarctic Peninsula and South Georgia are two of the best described regional ecosystems of the Southern Ocean. They therefore provide a useful basis for developing comparative analyses of ocean ecosystems around the Antarctic. There are clear and expected differences in seasonality and species composition between the two ecosystems, but these mask an underlying similarity in ecosystem structure and function. This similarity results from the two ecosystems being part of a continuum, from more ice covered regions in the south to open water regions in the north. Within this continuum the major factors affecting ecosystem structure and function are the sea ice, the biogeochemical conditions and the connectivity generated by the flow of the Antarctic Circumpolar Current. Antarctic krill are central to the food web in both ecosystems, but the other species of plankton and predators present are different. These different species provide alternative pathways of energy transfer from primary production to the highest trophic levels. The relative dominance of these species can provide indicators of change in ecosystem structure and function. Both ecosystems are changing as a result of physically and biologically driven processes, and the ecological responses being observed are complex and variable across different species and within the two regions. Species in parts of the northern Antarctic Peninsula are being replaced by species that currently dominate farther north in more oceanic areas such as at South Georgia. The similarity of structure and strong connectivity, mean that projections of future change will require generic models of these ecosystems that can encompass changes in structure and function within a connected continuum from ice covered to open water in winter.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverJournal of Marine SystemsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jmarsys.2012.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverJournal of Marine SystemsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jmarsys.2012.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Portugal, United Kingdom, Australia, United States, Australia, United States, NorwayPublisher:Frontiers Media SA Funded by:FCT | MARE - Marine and Environ..., UKRI | Coordinating Internationa...FCT| MARE - Marine and Environmental Sciences Centre ,UKRI| Coordinating International Research on Southern Ocean Ecosystems: Implementation of the ICED ProgrammeJennifer A. Jackson; Rachel D. Cavanagh; Stuart Corney; Iain J. Staniland; José C. Xavier; José C. Xavier; Claire M. Waluda; Andrew J. Constable; Andrew J. Constable; Nadine M. Johnston; John Turner; Dieter Wolf-Gladrow; Eileen E. Hofmann; Walker O. Smith; Daniel P. Costa; Richard G. J. Bellerby; Richard G. J. Bellerby; Eugene J. Murphy; Cheryl A. Knowland; Thomas J. Bracegirdle;handle: 11250/2507064 , 10316/108190
Increasing concern about the impacts of climate change on ecosystems is prompting ecologists and ecosystem managers to seek reliable projections of physical drivers of change. The use of global climate models in ecology is growing, although drawing ecologically meaningful conclusions can be problematic. The expertise required to access and interpret output from climate and earth system models is hampering progress in utilizing them most effectively to determine the wider implications of climate change. To address this issue, we present a joint approach between climate scientists and ecologists that explores key challenges and opportunities for progress. As an exemplar, our focus is the Southern Ocean, notable for significant change with global implications, and on sea ice, given its crucial role in this dynamic ecosystem. We combined perspectives to evaluate the representation of sea ice in global climate models. With an emphasis on ecologically-relevant criteria (sea ice extent and seasonality) we selected a subset of eight models that reliably reproduce extant sea ice distributions. While the model subset shows a similar mean change to the full ensemble in sea ice extent (approximately 50% decline in winter and 30% decline in summer), there is a marked reduction in the range. This improved the precision of projected future sea ice distributions by approximately one third, and means they are more amenable to ecological interpretation. We conclude that careful multidisciplinary evaluation of climate models, in conjunction with ongoing modeling advances, should form an integral part of utilizing model output.
Frontiers in Marine ... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2017License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/207Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2017.00308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2017License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/207Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2017.00308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, United Kingdom, United Kingdom, Australia, Portugal, AustraliaPublisher:Frontiers Media SA Funded by:UKRI | Isotopic characterisation...UKRI| Isotopic characterisation of nutrient dynamics and UCDW behaviour in the west Antarctic Peninsula sea ice environmentEugene J. Murphy; Nadine M. Johnston; Eileen E. Hofmann; Richard A. Phillips; Jennifer A. Jackson; Andrew J. Constable; Andrew J. Constable; Sian F. Henley; Jessica Melbourne-Thomas; Rowan Trebilco; Rachel D. Cavanagh; Geraint A. Tarling; Ryan A. Saunders; David K. A. Barnes; Daniel P. Costa; Stuart P. Corney; Stuart P. Corney; Ceridwen I. Fraser; Juan Höfer; Juan Höfer; Kevin A. Hughes; Chester J. Sands; Sally E. Thorpe; Philip N. Trathan; José C. Xavier; José C. Xavier;Southern Ocean ecosystems are globally important. Processes in the Antarctic atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric and oceanic systems. Southern Ocean biogeochemistry has also been shown to have global importance. In contrast, ocean ecological processes are often seen as largely separate from the rest of the global system. In this paper, we consider the degree of ecological connectivity at different trophic levels, linking Southern Ocean ecosystems with the global ocean, and their importance not only for the regional ecosystem but also the wider Earth system. We also consider the human system connections, including the role of Southern Ocean ecosystems in supporting society, culture, and economy in many nations, influencing public and political views and hence policy. Rather than Southern Ocean ecosystems being defined by barriers at particular oceanic fronts, ecological changes are gradual due to cross-front exchanges involving oceanographic processes and organism movement. Millions of seabirds and hundreds of thousands of cetaceans move north out of polar waters in the austral autumn interacting in food webs across the Southern Hemisphere, and a few species cross the equator. A number of species migrate into the east and west ocean-basin boundary current and continental shelf regions of the major southern continents. Human travel in and out of the Southern Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors. These operations arise from many nations, particularly in the Northern Hemisphere, and are important in local communities as well as national economic, scientific, and political activities. As a result of the extensive connectivity, future changes in Southern Ocean ecosystems will have consequences throughout the Earth system, affecting ecosystem services with socio-economic impacts throughout the world. The high level of connectivity also means that changes and policy decisions in marine ecosystems outside the Southern Ocean have consequences for ecosystems south of the Antarctic Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is critical for interpreting current change, projecting future change impacts, and identifying integrated strategies for conserving and managing both the Southern Ocean and the broader Earth system.
NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2021License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/360Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.624451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United Kingdom, United Kingdom, Australia, United KingdomPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | TRIMEC| TRIMWildan Ghiffary; Kristen L. Wilson; Derek P. Tittensor; Derek P. Tittensor; Boris Worm; Patrick N. Halpin; Daniel G. Boyce; Daniel C. Dunn; Daniel C. Dunn; Susie M. Grant; Naomi Kingston; Aurelie Cosandey-Godin; Mike Harfoot; Elizabeth Mcleod; Guillermo Ortuño Crespo; Maria Beger; Maria Beger; Bethan Christine O'Leary; Bethan Christine O'Leary; Jennifer McGowan; Kristina Boerder; Ryan R. E. Stanley; Rachel D. Cavanagh; Laurenne Schiller; Nicholas W. Jeffery; Susan G. Heaslip; Chris McOwen; Heike K. Lotze; Maxine C. Westhead; Lee Hannah;We evaluate the extent of climate change adaptation in the global protected seascape, and identify ways to further advance it.
CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aay9969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 159 citations 159 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aay9969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, United StatesPublisher:The Royal Society Funded by:NSF | Collaborative Research: W..., UKRI | Coordinating Internationa..., UKRI | Integrating Macroecology ... +1 projectsNSF| Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea ,UKRI| Coordinating International Research on Southern Ocean Ecosystems: Implementation of the ICED Programme ,UKRI| Integrating Macroecology and Modelling to Elucidate Regulation of Services from Ecosystems (IMMERSE) ,NSF| Collaborative Research: Impact of Mesoscale Processes on Iron Supply and Phytoplankton Dynamics in the Ross SeaMurphy, Eugene J.; Cavanagh, Rachel D.; Drinkwater, Ken F.; Grant, Susie M.; Heymans, J.J.; Hofmann, Eileen E.; Hunt, George L.; Johnston, Nadine M.;The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs.
NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/514828/1/Murphy.pdfData sources: NERC Open Research ArchiveOld Dominion University: ODU Digital CommonsArticle . 2016License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/230Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/6md5z9jmData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1646&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 97 citations 97 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NERC Open Research Archive2016 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/514828/1/Murphy.pdfData sources: NERC Open Research ArchiveOld Dominion University: ODU Digital CommonsArticle . 2016License: CC BYFull-Text: https://digitalcommons.odu.edu/ccpo_pubs/230Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/6md5z9jmData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaProceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.1646&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:American Geophysical Union (AGU) Funded by:UKRI | Retreat of Southern Hemis...UKRI| Retreat of Southern Hemisphere Sea Ice, 130 000 to 116 000 years BPJohn Turner; Maria Vittoria Guarino; Jack Arnatt; Babula Jena; Gareth J. Marshall; Tony Phillips; C. C. Bajish; Kyle Clem; Zhaomin Wang; Tom Andersson; Eugene J. Murphy; Rachel Cavanagh;doi: 10.1029/2020gl087127
AbstractIn Austral summer 2016/2017, the sea ice extent (SIE) in the Weddell Sea dropped to a near‐record value in the satellite era (1.88 × 106 km2), a large negative seasonal anomaly that persisted in an unprecedented fashion for the following three summers. Various atmospheric and oceanic factors played a part in the change. Ice loss started in September 2016 when the northern Weddell Sea experienced westerly winds of record strength, advecting multiyear sea ice from the region. In late 2016, a polynya over Maud Rise contributed to low SIE over the eastern Weddell Sea. With extensive areas of open water early in the summer, upper ocean temperatures increased by ~0.5°C, with the anomalies persisting in subsequent years. The reappearance of the Maud Rise polynya in 2017, high ocean temperatures, and storms of record depth kept the summer SIE low.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl087127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gl087127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu