- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:MDPI AG Publicly fundedFunded by:EC | RealTideEC| RealTideRoss O’Connell; Mitra Kamidelivand; Ioannis Polydoros; Christopher Wright; Paul Bonar; Alison J. Williams; Jimmy Murphy;doi: 10.3390/en16227526
Marine renewable energy (MRE) development will be crucial to achieve worldwide energy decarbonization. In Europe, 1 GW and 40 GW of ocean energy are set to be developed by 2030 and 2050, respectively. Support is essential if wave and tidal stream arrays are to become more economically viable than they currently are. Four recently developed open-access software tools are used in this study to investigate the critical and expensive elements of potential demonstration and commercial scale tidal projects. The tools have been designed and built to assist users with array configurations, foundation and mooring (F&M) design, operation and maintenance (O&M) strategies, and techno-economic analysis. Demonstration of their use is performed in this study to model scenarios for 2 MW, 10 MW, 40 MW, and 100 MW tidal energy projects employing typical 500 kW fixed and 2 MW floating turbines at the West Anglesey Tidal Demonstration Zone in the Irish Sea. The following metrics are examined: the power output and wake losses of staggered and line configurations; the design and costs of simple gravity-based foundations, gravity-based anchors and the four-chain catenary mooring system of a single turbine; the mean O&M costs and farm availability over the project life; and the breakdown of levelized cost of energy (LCoE) for all eight scenarios to ultimately reveal minimum values of 173 EUR/MWh and 147 EUR/MWh for fixed and floating tidal energy technologies, respectively. The thorough analysis facilitated within these four tools to forecast realistic situations in a specific location can help users design a tidal energy project for an area with considerable potential for commercial scale projects, and thus assist the ocean energy community in promoting and nurturing the sector in the years and decades ahead.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16227526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16227526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Charles E. Badoe; Matt Edmunds; Alison J. Williams; Anup Nambiar; Brian Sellar; Aristides Kiprakis; Ian Masters;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Masters, Ian; Esmaeili, Ali; Evans, Iestyn; George, Deepak; Glasby, David; Horrillo-Caraballo, Jose M; Lake, Thomas; Morgan, Dawn; Togneri, Michael; Williams, Alison;Operational data collected during tests of the Remote River Energy System (RRES) device previously described in 10.1680/jener.21.00101 with data made available at 10.5281/zenodo.8082024 This was the first tidal energy test carried out at the new Marine Energy Test Area in Pembrokeshire, Wales, UK, achieving Technology Readiness Level 5. Data consists of snapshots from the onboard OpenPLC based control system, with channels described in the included PDF file. Files are named by date and run number - YYYYMMDD-RR.csv.gz This work was supported by the MEECE project funded by the European Regional Development Fund and the UK \& Welsh governments through the Swansea Bay City Deal.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14449551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14449551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Xiaorong Li; Ming Li; Judith Wolf; Alison J. Williams; Charles Badoe; Ian Masters;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | SURFTEC: SUrvivability an...UKRI| SURFTEC: SUrvivability and Reliability of Floating Tidal Energy ConvertersThomas Lake; Jack Hughes; Michael Togneri; Alison J. Williams; Penny Jeffcoate; Ralf Starzmann; Nicholas Kaufmann; Ian Masters;Abstract The development of tidal energy converters, and particularly floating tidal energy converters, is an area of increased development in recent years. Testing of a floating tidal energy device over winter 2017/18 led to an opportunity to record and examine strain of a full scale composite turbine blade under operational conditions, with comparison of generating and parked behaviours. Comparison of the recorded data shows that blade strain correlates well with both torque and thrust over the averaging periods specified in IEC62600-200, although examination of frequency spectra generated from the strain data show that higher frequency fluctuations in strain are not necessarily detectable in the larger scale thrust and torque recordings with this particular measurement arrangement. The need for well synchronised clocks on recording systems is also highlighted, along with a cross-correlation method used to recover the alignment of data from different systems to allow comparison between them over periods of a similar order of magnitude to the clock skew between the systems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2023Publisher:Zenodo Masters, Ian; Evans, Iestyn; George, Deepak; Glasby, David; Horillo-Caraballo, Jose M.; Lake, Thomas; Togneri, Michael; Williams, Alison J.;The RRES (Remote River Energy System), is an energy converting device that is intended for use in fast flowing rivers for a small amount of electrical energy supply to remote communities. The design comprises a floating platform with a turbine suspended underneath, coupled with a closed loop water pump system and hydro-electric generator. The information published as part of this release includes engineering drawings and documentation detailing the design and operation of the device. This work was supported by the MEECE project funded by the European Regional Development Fund and the UK & Welsh governments through the Swansea Bay City Deal.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8082024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8082024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:MDPI AG Publicly fundedFunded by:EC | RealTideEC| RealTideRoss O’Connell; Mitra Kamidelivand; Ioannis Polydoros; Christopher Wright; Paul Bonar; Alison J. Williams; Jimmy Murphy;doi: 10.3390/en16227526
Marine renewable energy (MRE) development will be crucial to achieve worldwide energy decarbonization. In Europe, 1 GW and 40 GW of ocean energy are set to be developed by 2030 and 2050, respectively. Support is essential if wave and tidal stream arrays are to become more economically viable than they currently are. Four recently developed open-access software tools are used in this study to investigate the critical and expensive elements of potential demonstration and commercial scale tidal projects. The tools have been designed and built to assist users with array configurations, foundation and mooring (F&M) design, operation and maintenance (O&M) strategies, and techno-economic analysis. Demonstration of their use is performed in this study to model scenarios for 2 MW, 10 MW, 40 MW, and 100 MW tidal energy projects employing typical 500 kW fixed and 2 MW floating turbines at the West Anglesey Tidal Demonstration Zone in the Irish Sea. The following metrics are examined: the power output and wake losses of staggered and line configurations; the design and costs of simple gravity-based foundations, gravity-based anchors and the four-chain catenary mooring system of a single turbine; the mean O&M costs and farm availability over the project life; and the breakdown of levelized cost of energy (LCoE) for all eight scenarios to ultimately reveal minimum values of 173 EUR/MWh and 147 EUR/MWh for fixed and floating tidal energy technologies, respectively. The thorough analysis facilitated within these four tools to forecast realistic situations in a specific location can help users design a tidal energy project for an area with considerable potential for commercial scale projects, and thus assist the ocean energy community in promoting and nurturing the sector in the years and decades ahead.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16227526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16227526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Charles E. Badoe; Matt Edmunds; Alison J. Williams; Anup Nambiar; Brian Sellar; Aristides Kiprakis; Ian Masters;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Masters, Ian; Esmaeili, Ali; Evans, Iestyn; George, Deepak; Glasby, David; Horrillo-Caraballo, Jose M; Lake, Thomas; Morgan, Dawn; Togneri, Michael; Williams, Alison;Operational data collected during tests of the Remote River Energy System (RRES) device previously described in 10.1680/jener.21.00101 with data made available at 10.5281/zenodo.8082024 This was the first tidal energy test carried out at the new Marine Energy Test Area in Pembrokeshire, Wales, UK, achieving Technology Readiness Level 5. Data consists of snapshots from the onboard OpenPLC based control system, with channels described in the included PDF file. Files are named by date and run number - YYYYMMDD-RR.csv.gz This work was supported by the MEECE project funded by the European Regional Development Fund and the UK \& Welsh governments through the Swansea Bay City Deal.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14449551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.14449551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Xiaorong Li; Ming Li; Judith Wolf; Alison J. Williams; Charles Badoe; Ian Masters;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | SURFTEC: SUrvivability an...UKRI| SURFTEC: SUrvivability and Reliability of Floating Tidal Energy ConvertersThomas Lake; Jack Hughes; Michael Togneri; Alison J. Williams; Penny Jeffcoate; Ralf Starzmann; Nicholas Kaufmann; Ian Masters;Abstract The development of tidal energy converters, and particularly floating tidal energy converters, is an area of increased development in recent years. Testing of a floating tidal energy device over winter 2017/18 led to an opportunity to record and examine strain of a full scale composite turbine blade under operational conditions, with comparison of generating and parked behaviours. Comparison of the recorded data shows that blade strain correlates well with both torque and thrust over the averaging periods specified in IEC62600-200, although examination of frequency spectra generated from the strain data show that higher frequency fluctuations in strain are not necessarily detectable in the larger scale thrust and torque recordings with this particular measurement arrangement. The need for well synchronised clocks on recording systems is also highlighted, along with a cross-correlation method used to recover the alignment of data from different systems to allow comparison between them over periods of a similar order of magnitude to the clock skew between the systems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2023Publisher:Zenodo Masters, Ian; Evans, Iestyn; George, Deepak; Glasby, David; Horillo-Caraballo, Jose M.; Lake, Thomas; Togneri, Michael; Williams, Alison J.;The RRES (Remote River Energy System), is an energy converting device that is intended for use in fast flowing rivers for a small amount of electrical energy supply to remote communities. The design comprises a floating platform with a turbine suspended underneath, coupled with a closed loop water pump system and hydro-electric generator. The information published as part of this release includes engineering drawings and documentation detailing the design and operation of the device. This work was supported by the MEECE project funded by the European Regional Development Fund and the UK & Welsh governments through the Swansea Bay City Deal.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8082024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8082024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu