- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 CanadaPublisher:Springer Science and Business Media LLC Authors: Gandomè Mayeul Leger Davy Quenum; Nana Ama Browne Klutse; Diarra Dieng; Patrick Laux; +3 AuthorsGandomè Mayeul Leger Davy Quenum; Nana Ama Browne Klutse; Diarra Dieng; Patrick Laux; Joël Arnault; Japhet. D. Kodja; Philip G. Oguntunde;handle: 10625/62458
Abstract The study investigates how the rising global temperature will affect the spatial pattern of rainfall and consequently drought in West Africa. The precipitation and potential evapotranspiration variables that are obtained from the Rossby Centre regional atmospheric model (RCA4) and driven by ten (10) global climate models under the RCP8.5 scenario were used. The model data were obtained from the Coordinated Regional Climate Downscaling Experiment (CORDEX) and analyzed at four specific global warming levels (GWLs) (i.e., 1.5 °C, 2.0 °C, 2.5 °C, and 3.0 °C) above the pre-industrial level. This study utilized four (4) indices: the standardized precipitation index, the precipitation concentration index, the precipitation concentration degree, and the precipitation concentration period over West Africa to explore the spatiotemporal variations in the characteristics of precipitation concentrations. Additionally, studying the impact of the four GWLs on consecutive dry days, consecutive wet days, and frequency of the intense rainfall events led to a better understanding of the spatiotemporal pattern of extreme precipitation. The results show that, at each GWL studied, the onset of rainfall comes 1 month earlier in the Gulf of Guinea compared to the historical period (1971–2000) with increasing rainfall intensity in the whole study domain, and the northeastern part of the study area becomes wetter. The rainfall concentration is uniformly distributed over the Gulf of Guinea and the Savanna zone for both the historical period and RCP8.5 scenario, while the Sahel zone which has shown an irregular concentration of rainfall for the historical period shows a uniform concentration of rainfall under all four GWLs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41748-019-00133-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41748-019-00133-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 CanadaPublisher:Springer Science and Business Media LLC Authors: Gandomè Mayeul Leger Davy Quenum; Nana Ama Browne Klutse; Diarra Dieng; Patrick Laux; +3 AuthorsGandomè Mayeul Leger Davy Quenum; Nana Ama Browne Klutse; Diarra Dieng; Patrick Laux; Joël Arnault; Japhet. D. Kodja; Philip G. Oguntunde;handle: 10625/62458
Abstract The study investigates how the rising global temperature will affect the spatial pattern of rainfall and consequently drought in West Africa. The precipitation and potential evapotranspiration variables that are obtained from the Rossby Centre regional atmospheric model (RCA4) and driven by ten (10) global climate models under the RCP8.5 scenario were used. The model data were obtained from the Coordinated Regional Climate Downscaling Experiment (CORDEX) and analyzed at four specific global warming levels (GWLs) (i.e., 1.5 °C, 2.0 °C, 2.5 °C, and 3.0 °C) above the pre-industrial level. This study utilized four (4) indices: the standardized precipitation index, the precipitation concentration index, the precipitation concentration degree, and the precipitation concentration period over West Africa to explore the spatiotemporal variations in the characteristics of precipitation concentrations. Additionally, studying the impact of the four GWLs on consecutive dry days, consecutive wet days, and frequency of the intense rainfall events led to a better understanding of the spatiotemporal pattern of extreme precipitation. The results show that, at each GWL studied, the onset of rainfall comes 1 month earlier in the Gulf of Guinea compared to the historical period (1971–2000) with increasing rainfall intensity in the whole study domain, and the northeastern part of the study area becomes wetter. The rainfall concentration is uniformly distributed over the Gulf of Guinea and the Savanna zone for both the historical period and RCP8.5 scenario, while the Sahel zone which has shown an irregular concentration of rainfall for the historical period shows a uniform concentration of rainfall under all four GWLs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41748-019-00133-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41748-019-00133-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Germany, Germany, Netherlands, France, FrancePublisher:Springer Science and Business Media LLC Rahimi, Jaber; Mutua, John Yumbya; Notenbaert, An M. O.; Dieng, Diarra; Butterbach-Bahl, Klaus; Rahimi, Jaber; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany; Mutua, John Yumbya; Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Nairobi, Kenya; Notenbaert, An M. O.; Farming Systems Ecology, Wageningen University and Research (WUR), Wageningen, the Netherlands; Dieng, Diarra; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany; Butterbach-Bahl, Klaus; International Livestock Research Institute (ILRI), Nairobi, Kenya;AbstractThis study focuses on heat stress conditions for dairy cattle production in West Africa under current and future climatic conditions. After testing the accuracy of the dynamically downscaled climate datasets for simulating the historical daily maximum temperature (Tmax) and relative humidity (RH) in West Africa for 50 meteorological stations, we used the dataset for calculating the temperature-humidity index (THI), i.e., an index indicating heat stress for dairy cattle on a daily scale. Calculations were made for the historical period (1981–2010) using the ERA-Interim reanalysis dataset, and for two future periods (2021–2050 and 2071–2100) using climate predictions of the GFDL-ESM2M, HadGEM2-ES, and MPI-ESM-MR Global Circulation Models (GCMs) under the RCP4.5 emission scenario. Here, we show that during the period from 1981 to 2010 for > 1/5 of the region of West Africa, the frequency ofsevere/dangerheat events per year, i.e., events that result in significant decreases in productive and reproductive performances, increased from 11 to 29–38 days (significant at 95% confidence level). Most obvious changes were observed for the eastern and southeastern parts. Under future climate conditions periods withsevere/dangerheat stress events will increase further as compared with the historical period by 5–22% depending on the GCM used. Moreover, the average length of periods withsevere/dangerheat stress is expected to increase from ~ 3 days in the historical period to ~ 4–7 days by 2021–2050 and even to up to 10 days by 2071–2100. Based on the average results of three GCMs, by 2071–2100, around 22% of dairy cattle population currently living in this area is expected to experience around 70 days more ofsevere/dangerheat stress (compare with the historical period), especially in the southern half of West Africa. The result is alarming, as it shows that dairy production systems in West Africa are jeopardized at large scale by climate change and that depending on the GCM used, milk production might decrease by 200–400 kg/year by 2071–2100 in around 1, 7, or 11%. Our study calls for the development of improved dairy cattle production systems with higher adaptive capacity in order to deal with expected future heat stress conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108272Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2020License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02733-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108272Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2020License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02733-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Germany, Germany, Netherlands, France, FrancePublisher:Springer Science and Business Media LLC Rahimi, Jaber; Mutua, John Yumbya; Notenbaert, An M. O.; Dieng, Diarra; Butterbach-Bahl, Klaus; Rahimi, Jaber; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany; Mutua, John Yumbya; Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Nairobi, Kenya; Notenbaert, An M. O.; Farming Systems Ecology, Wageningen University and Research (WUR), Wageningen, the Netherlands; Dieng, Diarra; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany; Butterbach-Bahl, Klaus; International Livestock Research Institute (ILRI), Nairobi, Kenya;AbstractThis study focuses on heat stress conditions for dairy cattle production in West Africa under current and future climatic conditions. After testing the accuracy of the dynamically downscaled climate datasets for simulating the historical daily maximum temperature (Tmax) and relative humidity (RH) in West Africa for 50 meteorological stations, we used the dataset for calculating the temperature-humidity index (THI), i.e., an index indicating heat stress for dairy cattle on a daily scale. Calculations were made for the historical period (1981–2010) using the ERA-Interim reanalysis dataset, and for two future periods (2021–2050 and 2071–2100) using climate predictions of the GFDL-ESM2M, HadGEM2-ES, and MPI-ESM-MR Global Circulation Models (GCMs) under the RCP4.5 emission scenario. Here, we show that during the period from 1981 to 2010 for > 1/5 of the region of West Africa, the frequency ofsevere/dangerheat events per year, i.e., events that result in significant decreases in productive and reproductive performances, increased from 11 to 29–38 days (significant at 95% confidence level). Most obvious changes were observed for the eastern and southeastern parts. Under future climate conditions periods withsevere/dangerheat stress events will increase further as compared with the historical period by 5–22% depending on the GCM used. Moreover, the average length of periods withsevere/dangerheat stress is expected to increase from ~ 3 days in the historical period to ~ 4–7 days by 2021–2050 and even to up to 10 days by 2071–2100. Based on the average results of three GCMs, by 2071–2100, around 22% of dairy cattle population currently living in this area is expected to experience around 70 days more ofsevere/dangerheat stress (compare with the historical period), especially in the southern half of West Africa. The result is alarming, as it shows that dairy production systems in West Africa are jeopardized at large scale by climate change and that depending on the GCM used, milk production might decrease by 200–400 kg/year by 2071–2100 in around 1, 7, or 11%. Our study calls for the development of improved dairy cattle production systems with higher adaptive capacity in order to deal with expected future heat stress conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108272Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2020License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02733-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108272Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2020License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02733-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, France, France, France, GermanyPublisher:Springer Science and Business Media LLC Funded by:ANR | PRODUCTANR| PRODUCTSalack, Seyni; Sanfo, S.; Sanfo, Safiétou; Sidibe, Moussa; Daku, Elidaa K.; Camara, Ibrahima; Dieng, Mame Diarra Bousso; Hien, Koufanou; Torou, Bio Mohamadou; Ogunjobi, Kehinde O.; Sangare, Sheick Ahmed Khalil S. B.; Kouame, Konan Raoul; Koffi, Yao Bernard; Liersch, Stefan; Savadogo, M.; Savadogo, Moumini;AbstractThe regional climate as it is now and in the future will put pressure on investments in sub-Saharan Africa in water resource management, fisheries, and other crop and livestock production systems. Changes in oceanic characteristics across the Atlantic Ocean will result in remarkable vulnerability of coastal ecology, littorals, and mangroves in the middle of the twenty-first century and beyond. In line with the countries' objectives of creating a green economy that allows reduced greenhouse gas emissions, improved resource efficiency, and prevention of biodiversity loss, we identify the most pressing needs for adaptation and the best adaptation choices that are also clean and affordable. According to empirical data from the field and customized model simulation designs, the cost of these adaptation measures will likely decrease and benefit sustainable green growth in agriculture, water resource management, and coastal ecosystems, as hydroclimatic hazards such as pluviometric and thermal extremes become more common in West Africa. Most of these adaptation options are local and need to be scaled up and operationalized for sustainable development. Governmental sovereign wealth funds, investments from the private sector, and funding from global climate funds can be used to operationalize these adaptation measures. Effective legislation, knowledge transfer, and pertinent collaborations are necessary for their success.
École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHAL-Ecole des Ponts ParisTechArticle . 2022License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-22331-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHAL-Ecole des Ponts ParisTechArticle . 2022License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-22331-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, France, France, France, GermanyPublisher:Springer Science and Business Media LLC Funded by:ANR | PRODUCTANR| PRODUCTSalack, Seyni; Sanfo, S.; Sanfo, Safiétou; Sidibe, Moussa; Daku, Elidaa K.; Camara, Ibrahima; Dieng, Mame Diarra Bousso; Hien, Koufanou; Torou, Bio Mohamadou; Ogunjobi, Kehinde O.; Sangare, Sheick Ahmed Khalil S. B.; Kouame, Konan Raoul; Koffi, Yao Bernard; Liersch, Stefan; Savadogo, M.; Savadogo, Moumini;AbstractThe regional climate as it is now and in the future will put pressure on investments in sub-Saharan Africa in water resource management, fisheries, and other crop and livestock production systems. Changes in oceanic characteristics across the Atlantic Ocean will result in remarkable vulnerability of coastal ecology, littorals, and mangroves in the middle of the twenty-first century and beyond. In line with the countries' objectives of creating a green economy that allows reduced greenhouse gas emissions, improved resource efficiency, and prevention of biodiversity loss, we identify the most pressing needs for adaptation and the best adaptation choices that are also clean and affordable. According to empirical data from the field and customized model simulation designs, the cost of these adaptation measures will likely decrease and benefit sustainable green growth in agriculture, water resource management, and coastal ecosystems, as hydroclimatic hazards such as pluviometric and thermal extremes become more common in West Africa. Most of these adaptation options are local and need to be scaled up and operationalized for sustainable development. Governmental sovereign wealth funds, investments from the private sector, and funding from global climate funds can be used to operationalize these adaptation measures. Effective legislation, knowledge transfer, and pertinent collaborations are necessary for their success.
École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHAL-Ecole des Ponts ParisTechArticle . 2022License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-22331-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHAL-Ecole des Ponts ParisTechArticle . 2022License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-22331-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 CanadaPublisher:Springer Science and Business Media LLC Authors: Gandomè Mayeul Leger Davy Quenum; Nana Ama Browne Klutse; Diarra Dieng; Patrick Laux; +3 AuthorsGandomè Mayeul Leger Davy Quenum; Nana Ama Browne Klutse; Diarra Dieng; Patrick Laux; Joël Arnault; Japhet. D. Kodja; Philip G. Oguntunde;handle: 10625/62458
Abstract The study investigates how the rising global temperature will affect the spatial pattern of rainfall and consequently drought in West Africa. The precipitation and potential evapotranspiration variables that are obtained from the Rossby Centre regional atmospheric model (RCA4) and driven by ten (10) global climate models under the RCP8.5 scenario were used. The model data were obtained from the Coordinated Regional Climate Downscaling Experiment (CORDEX) and analyzed at four specific global warming levels (GWLs) (i.e., 1.5 °C, 2.0 °C, 2.5 °C, and 3.0 °C) above the pre-industrial level. This study utilized four (4) indices: the standardized precipitation index, the precipitation concentration index, the precipitation concentration degree, and the precipitation concentration period over West Africa to explore the spatiotemporal variations in the characteristics of precipitation concentrations. Additionally, studying the impact of the four GWLs on consecutive dry days, consecutive wet days, and frequency of the intense rainfall events led to a better understanding of the spatiotemporal pattern of extreme precipitation. The results show that, at each GWL studied, the onset of rainfall comes 1 month earlier in the Gulf of Guinea compared to the historical period (1971–2000) with increasing rainfall intensity in the whole study domain, and the northeastern part of the study area becomes wetter. The rainfall concentration is uniformly distributed over the Gulf of Guinea and the Savanna zone for both the historical period and RCP8.5 scenario, while the Sahel zone which has shown an irregular concentration of rainfall for the historical period shows a uniform concentration of rainfall under all four GWLs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41748-019-00133-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41748-019-00133-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 CanadaPublisher:Springer Science and Business Media LLC Authors: Gandomè Mayeul Leger Davy Quenum; Nana Ama Browne Klutse; Diarra Dieng; Patrick Laux; +3 AuthorsGandomè Mayeul Leger Davy Quenum; Nana Ama Browne Klutse; Diarra Dieng; Patrick Laux; Joël Arnault; Japhet. D. Kodja; Philip G. Oguntunde;handle: 10625/62458
Abstract The study investigates how the rising global temperature will affect the spatial pattern of rainfall and consequently drought in West Africa. The precipitation and potential evapotranspiration variables that are obtained from the Rossby Centre regional atmospheric model (RCA4) and driven by ten (10) global climate models under the RCP8.5 scenario were used. The model data were obtained from the Coordinated Regional Climate Downscaling Experiment (CORDEX) and analyzed at four specific global warming levels (GWLs) (i.e., 1.5 °C, 2.0 °C, 2.5 °C, and 3.0 °C) above the pre-industrial level. This study utilized four (4) indices: the standardized precipitation index, the precipitation concentration index, the precipitation concentration degree, and the precipitation concentration period over West Africa to explore the spatiotemporal variations in the characteristics of precipitation concentrations. Additionally, studying the impact of the four GWLs on consecutive dry days, consecutive wet days, and frequency of the intense rainfall events led to a better understanding of the spatiotemporal pattern of extreme precipitation. The results show that, at each GWL studied, the onset of rainfall comes 1 month earlier in the Gulf of Guinea compared to the historical period (1971–2000) with increasing rainfall intensity in the whole study domain, and the northeastern part of the study area becomes wetter. The rainfall concentration is uniformly distributed over the Gulf of Guinea and the Savanna zone for both the historical period and RCP8.5 scenario, while the Sahel zone which has shown an irregular concentration of rainfall for the historical period shows a uniform concentration of rainfall under all four GWLs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41748-019-00133-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s41748-019-00133-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Germany, Germany, Netherlands, France, FrancePublisher:Springer Science and Business Media LLC Rahimi, Jaber; Mutua, John Yumbya; Notenbaert, An M. O.; Dieng, Diarra; Butterbach-Bahl, Klaus; Rahimi, Jaber; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany; Mutua, John Yumbya; Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Nairobi, Kenya; Notenbaert, An M. O.; Farming Systems Ecology, Wageningen University and Research (WUR), Wageningen, the Netherlands; Dieng, Diarra; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany; Butterbach-Bahl, Klaus; International Livestock Research Institute (ILRI), Nairobi, Kenya;AbstractThis study focuses on heat stress conditions for dairy cattle production in West Africa under current and future climatic conditions. After testing the accuracy of the dynamically downscaled climate datasets for simulating the historical daily maximum temperature (Tmax) and relative humidity (RH) in West Africa for 50 meteorological stations, we used the dataset for calculating the temperature-humidity index (THI), i.e., an index indicating heat stress for dairy cattle on a daily scale. Calculations were made for the historical period (1981–2010) using the ERA-Interim reanalysis dataset, and for two future periods (2021–2050 and 2071–2100) using climate predictions of the GFDL-ESM2M, HadGEM2-ES, and MPI-ESM-MR Global Circulation Models (GCMs) under the RCP4.5 emission scenario. Here, we show that during the period from 1981 to 2010 for > 1/5 of the region of West Africa, the frequency ofsevere/dangerheat events per year, i.e., events that result in significant decreases in productive and reproductive performances, increased from 11 to 29–38 days (significant at 95% confidence level). Most obvious changes were observed for the eastern and southeastern parts. Under future climate conditions periods withsevere/dangerheat stress events will increase further as compared with the historical period by 5–22% depending on the GCM used. Moreover, the average length of periods withsevere/dangerheat stress is expected to increase from ~ 3 days in the historical period to ~ 4–7 days by 2021–2050 and even to up to 10 days by 2071–2100. Based on the average results of three GCMs, by 2071–2100, around 22% of dairy cattle population currently living in this area is expected to experience around 70 days more ofsevere/dangerheat stress (compare with the historical period), especially in the southern half of West Africa. The result is alarming, as it shows that dairy production systems in West Africa are jeopardized at large scale by climate change and that depending on the GCM used, milk production might decrease by 200–400 kg/year by 2071–2100 in around 1, 7, or 11%. Our study calls for the development of improved dairy cattle production systems with higher adaptive capacity in order to deal with expected future heat stress conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108272Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2020License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02733-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108272Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2020License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02733-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Germany, Germany, Netherlands, France, FrancePublisher:Springer Science and Business Media LLC Rahimi, Jaber; Mutua, John Yumbya; Notenbaert, An M. O.; Dieng, Diarra; Butterbach-Bahl, Klaus; Rahimi, Jaber; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany; Mutua, John Yumbya; Tropical Forages Program, International Center for Tropical Agriculture (CIAT), Nairobi, Kenya; Notenbaert, An M. O.; Farming Systems Ecology, Wageningen University and Research (WUR), Wageningen, the Netherlands; Dieng, Diarra; Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany; Butterbach-Bahl, Klaus; International Livestock Research Institute (ILRI), Nairobi, Kenya;AbstractThis study focuses on heat stress conditions for dairy cattle production in West Africa under current and future climatic conditions. After testing the accuracy of the dynamically downscaled climate datasets for simulating the historical daily maximum temperature (Tmax) and relative humidity (RH) in West Africa for 50 meteorological stations, we used the dataset for calculating the temperature-humidity index (THI), i.e., an index indicating heat stress for dairy cattle on a daily scale. Calculations were made for the historical period (1981–2010) using the ERA-Interim reanalysis dataset, and for two future periods (2021–2050 and 2071–2100) using climate predictions of the GFDL-ESM2M, HadGEM2-ES, and MPI-ESM-MR Global Circulation Models (GCMs) under the RCP4.5 emission scenario. Here, we show that during the period from 1981 to 2010 for > 1/5 of the region of West Africa, the frequency ofsevere/dangerheat events per year, i.e., events that result in significant decreases in productive and reproductive performances, increased from 11 to 29–38 days (significant at 95% confidence level). Most obvious changes were observed for the eastern and southeastern parts. Under future climate conditions periods withsevere/dangerheat stress events will increase further as compared with the historical period by 5–22% depending on the GCM used. Moreover, the average length of periods withsevere/dangerheat stress is expected to increase from ~ 3 days in the historical period to ~ 4–7 days by 2021–2050 and even to up to 10 days by 2071–2100. Based on the average results of three GCMs, by 2071–2100, around 22% of dairy cattle population currently living in this area is expected to experience around 70 days more ofsevere/dangerheat stress (compare with the historical period), especially in the southern half of West Africa. The result is alarming, as it shows that dairy production systems in West Africa are jeopardized at large scale by climate change and that depending on the GCM used, milk production might decrease by 200–400 kg/year by 2071–2100 in around 1, 7, or 11%. Our study calls for the development of improved dairy cattle production systems with higher adaptive capacity in order to deal with expected future heat stress conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108272Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2020License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02733-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108272Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2020License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02733-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, France, France, France, GermanyPublisher:Springer Science and Business Media LLC Funded by:ANR | PRODUCTANR| PRODUCTSalack, Seyni; Sanfo, S.; Sanfo, Safiétou; Sidibe, Moussa; Daku, Elidaa K.; Camara, Ibrahima; Dieng, Mame Diarra Bousso; Hien, Koufanou; Torou, Bio Mohamadou; Ogunjobi, Kehinde O.; Sangare, Sheick Ahmed Khalil S. B.; Kouame, Konan Raoul; Koffi, Yao Bernard; Liersch, Stefan; Savadogo, M.; Savadogo, Moumini;AbstractThe regional climate as it is now and in the future will put pressure on investments in sub-Saharan Africa in water resource management, fisheries, and other crop and livestock production systems. Changes in oceanic characteristics across the Atlantic Ocean will result in remarkable vulnerability of coastal ecology, littorals, and mangroves in the middle of the twenty-first century and beyond. In line with the countries' objectives of creating a green economy that allows reduced greenhouse gas emissions, improved resource efficiency, and prevention of biodiversity loss, we identify the most pressing needs for adaptation and the best adaptation choices that are also clean and affordable. According to empirical data from the field and customized model simulation designs, the cost of these adaptation measures will likely decrease and benefit sustainable green growth in agriculture, water resource management, and coastal ecosystems, as hydroclimatic hazards such as pluviometric and thermal extremes become more common in West Africa. Most of these adaptation options are local and need to be scaled up and operationalized for sustainable development. Governmental sovereign wealth funds, investments from the private sector, and funding from global climate funds can be used to operationalize these adaptation measures. Effective legislation, knowledge transfer, and pertinent collaborations are necessary for their success.
École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHAL-Ecole des Ponts ParisTechArticle . 2022License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-22331-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHAL-Ecole des Ponts ParisTechArticle . 2022License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-22331-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, France, France, France, GermanyPublisher:Springer Science and Business Media LLC Funded by:ANR | PRODUCTANR| PRODUCTSalack, Seyni; Sanfo, S.; Sanfo, Safiétou; Sidibe, Moussa; Daku, Elidaa K.; Camara, Ibrahima; Dieng, Mame Diarra Bousso; Hien, Koufanou; Torou, Bio Mohamadou; Ogunjobi, Kehinde O.; Sangare, Sheick Ahmed Khalil S. B.; Kouame, Konan Raoul; Koffi, Yao Bernard; Liersch, Stefan; Savadogo, M.; Savadogo, Moumini;AbstractThe regional climate as it is now and in the future will put pressure on investments in sub-Saharan Africa in water resource management, fisheries, and other crop and livestock production systems. Changes in oceanic characteristics across the Atlantic Ocean will result in remarkable vulnerability of coastal ecology, littorals, and mangroves in the middle of the twenty-first century and beyond. In line with the countries' objectives of creating a green economy that allows reduced greenhouse gas emissions, improved resource efficiency, and prevention of biodiversity loss, we identify the most pressing needs for adaptation and the best adaptation choices that are also clean and affordable. According to empirical data from the field and customized model simulation designs, the cost of these adaptation measures will likely decrease and benefit sustainable green growth in agriculture, water resource management, and coastal ecosystems, as hydroclimatic hazards such as pluviometric and thermal extremes become more common in West Africa. Most of these adaptation options are local and need to be scaled up and operationalized for sustainable development. Governmental sovereign wealth funds, investments from the private sector, and funding from global climate funds can be used to operationalize these adaptation measures. Effective legislation, knowledge transfer, and pertinent collaborations are necessary for their success.
École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHAL-Ecole des Ponts ParisTechArticle . 2022License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-22331-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03993983Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHAL-Ecole des Ponts ParisTechArticle . 2022License: CC BYData sources: HAL-Ecole des Ponts ParisTechadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-22331-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu