- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Wiley Authors: Alejandro de la Fuente; Alejandro Navarro; Stephen E. Williams;doi: 10.1111/gcb.16608
pmid: 36654193
AbstractClimate‐driven biodiversity erosion is escalating at an alarming rate. The pressure imposed by climate change is exceptionally high in tropical ecosystems, where species adapted to narrow environmental ranges exhibit strong physiological constraints. Despite the observed detrimental effect of climate change on ecosystems at a global scale, our understanding of the extent to which multiple climatic drivers affect population dynamics is limited. Here, we disentangle the impact of different climatic stressors on 47 rainforest birds inhabiting the mountains of the Australian Wet Tropics using hierarchical population models. We estimate the effect of spatiotemporal changes in temperature, precipitation, heatwaves, droughts and cyclones on the population dynamics of rainforest birds between 2000 and 2016. We find a strong effect of warming and changes in rainfall patterns across the elevational‐segregated bird communities, with lowland populations benefiting from increasing temperature and precipitation, while upland species show an inverse strong negative response to the same drivers. Additionally, we find a negative effect of heatwaves on lowland populations, a pattern associated with the observed distribution of these extreme events across elevations. In contrast, cyclones and droughts have a marginal effect on spatiotemporal changes in rainforest bird communities, suggesting a species‐specific response unrelated to the elevational gradient. This study demonstrated the importance of unravelling the drivers of climate change impacts on population changes, providing significant insight into the mechanisms accelerating climate‐induced biodiversity degradation.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1111/gcb.16608Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1111/gcb.16608Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:Wiley Bell, Rayna C.; Parra, Juan L.; Tonione, Maria; Hoskin, Conrad J.; Mackenzie, Jason B.; Williams, Stephen E.; Moritz, Craig;Globally, montane tropical diversity is characterized by extraordinary local endemism that is not readily explained by current environmental variables indicating a strong imprint of history. Montane species often exist as isolated populations under current climatic conditions and may have remained isolated throughout recent climatic cycles, leading to substantial genetic and phenotypic divergence. Alternatively, populations may have become contiguous during colder climates resulting in less divergence. Here we compare responses to historical climate fluctuation in a montane specialist skink, Lampropholis robertsi, and its more broadly distributed congener, L. coggeri, both endemic to rainforests of northeast Australia. To do so, we combine spatial modelling of potential distributions under representative palaeoclimates, multi-locus phylogeography and analyses of phenotypic variation. Spatial modelling of L. robertsi predicts strong isolation among disjunct montane refugia during warm climates, but with potential for localized exchange during the most recent glacial period. In contrast, predicted stable areas are more widespread and connected in L. coggeri. Both species exhibit pronounced phylogeographic structuring for mitochondrial and nuclear genes, attesting to low dispersal and high persistence across multiple isolated regions. This is most prominent in L. robertsi, for which coalescent analyses indicate that most populations persisted in isolation throughout the climate cycles of the Pleistocene. Morphological divergence, principally in body size, is more evident among isolated populations of L. robertsi than L. coggeri. These results highlight the biodiversity value of isolated montane populations and support the general hypothesis that tropical montane regions harbour high levels of narrow-range taxa because of their resilience to past climate change.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/62006Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-294x.2010.04676.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 80 citations 80 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/62006Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-294x.2010.04676.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Ary A. Hoffmann; Paul D. Rymer; Margaret Byrne; Katinka X. Ruthrof; Jennie Whinam; Melodie McGeoch; Dana M. Bergstrom; Greg R. Guerin; Ben Sparrow; Leo Joseph; Sarah J. Hill; Nigel R. Andrew; James Camac; Nicholas Bell; Markus Riegler; Janet L. Gardner; Stephen E. Williams;doi: 10.1111/aec.12674
handle: 11343/284795 , 1959.7/uws:50865 , 1885/196492 , 2440/118567
AbstractThe effects of anthropogenic climate change on biodiversity are well known for some high‐profile Australian marine systems, including coral bleaching and kelp forest devastation. Less well‐published are the impacts of climate change being observed in terrestrial ecosystems, although ecological models have predicted substantial changes are likely. Detecting and attributing terrestrial changes to anthropogenic factors is difficult due to the ecological importance of extreme conditions, the noisy nature of short‐term data collected with limited resources, and complexities introduced by biotic interactions. Here, we provide a suite of case studies that have considered possible impacts of anthropogenic climate change on Australian terrestrial systems. Our intention is to provide a diverse collection of stories illustrating how Australian flora and fauna are likely responding to direct and indirect effects of anthropogenic climate change. We aim to raise awareness rather than be comprehensive. We include case studies covering canopy dieback in forests, compositional shifts in vegetation, positive feedbacks between climate, vegetation and disturbance regimes, local extinctions in plants, size changes in birds, phenological shifts in reproduction and shifting biotic interactions that threaten communities and endangered species. Some of these changes are direct and clear cut, others are indirect and less clearly connected to climate change; however, all are important in providing insights into the future state of terrestrial ecosystems. We also highlight some of the management issues relevant to conserving terrestrial communities and ecosystems in the face of anthropogenic climate change.
Australian National ... arrow_drop_down Australian Journal of EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian Journal of EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Publicly fundedStephen E. Williams; Alistair J. Hobday; Lorena Falconi; Jean‐Marc Hero; Neil J. Holbrook; Samantha Capon; Nick R. Bond; Scott D. Ling; Lesley Hughes;AbstractClimate change poses significant emerging risks to biodiversity, ecosystem function and associated socioecological systems. Adaptation responses must be initiated in parallel with mitigation efforts, but resources are limited. As climate risks are not distributed equally across taxa, ecosystems and processes, strategic prioritization of research that addresses stakeholder‐relevant knowledge gaps will accelerate effective uptake into adaptation policy and management action. After a decade of climate change adaptation research within the Australian National Climate Change Adaptation Research Facility, we synthesize the National Adaptation Research Plans for marine, terrestrial and freshwater ecosystems. We identify the key, globally relevant priorities for ongoing research relevant to informing adaptation policy and environmental management aimed at maximizing the resilience of natural ecosystems to climate change. Informed by both global literature and an extensive stakeholder consultation across all ecosystems, sectors and regions in Australia, involving thousands of participants, we suggest 18 priority research topics based on their significance, urgency, technical and economic feasibility, existing knowledge gaps and potential for cobenefits across multiple sectors. These research priorities provide a unified guide for policymakers, funding organizations and researchers to strategically direct resources, maximize stakeholder uptake of resulting knowledge and minimize the impacts of climate change on natural ecosystems. Given the pace of climate change, it is imperative that we inform and accelerate adaptation progress in all regions around the world.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/396384Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/396384Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Informa UK Limited Authors: Shoo, Luke P.; Anderson, Alex; Williams, Stephen E.;doi: 10.1071/mu08062
Subspecies amphochlora of the Lewin’s Honeyeater (Meliphaga lewinii) is confined to a small isolated population in the McIlwraith Range, Cape York Peninsula, north-eastern Australia. The population is poorly known but is thought to be restricted to elevations above 500 m. We aimed to establish reliable estimates of population size and geographical range to enable a better evaluation of the conservation status of the subspecies. We also sought to quantify elevational patterns of density within the range and test the hypothesis that climate is the dominant factor governing range limits. We estimate the area of occupancy to be 183 km2, pending the investigation of three small fragments of predicted suitable habitat in mountain ranges to the north of the McIlwraith Range. Our count data indicate that the population probably consists of fewer than 5000 individuals (best estimate = 4666 individuals, 95% confidence intervals (CI) = 2868–7591). Highest densities were observed in a geographically limited subset of the range above 650 m. Independent validation of our species-climate distribution model suggests that the restricted spatial distribution of the subspecies is attributable to climate associations and implies that warm temperatures in particular act to restrict the lower elevational limit of the subspecies. We discuss the implications of these findings for the future survival of M. l. amphochlora in the context of contemporary climate warming.
Emu - Austral Ornith... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mu08062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Emu - Austral Ornith... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mu08062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:The Royal Society Funded by:ARC | Range dynamics and demogr..., ARC | Future Fellowships - Gran...ARC| Range dynamics and demographics of spatially structured populations under global change ,ARC| Future Fellowships - Grant ID: FT140101192Damien A. Fordham; Barry W. Brook; Conrad J. Hoskin; Robert L. Pressey; Jeremy VanDerWal; Stephen E. Williams;The effect of twenty-first-century climate change on biodiversity is commonly forecast based on modelled shifts in species ranges, linked to habitat suitability. These projections have been coupled with species–area relationships (SAR) to infer extinction rates indirectly as a result of the loss of climatically suitable areas and associated habitat. This approach does not model population dynamics explicitly, and so accepts that extinctions might occur after substantial (but unknown) delays—an extinction debt. Here we explicitly couple bioclimatic envelope models of climate and habitat suitability with generic life-history models for 24 species of frogs found in the Australian Wet Tropics (AWT). We show that (i) as many as four species of frogs face imminent extinction by 2080, due primarily to climate change; (ii) three frogs face delayed extinctions; and (iii) this extinction debt will take at least a century to be realized in full. Furthermore, we find congruence between forecast rates of extinction using SARs, and demographic models with an extinction lag of 120 years. We conclude that SAR approaches can provide useful advice to conservation on climate change impacts, provided there is a good understanding of the time lags over which delayed extinctions are likely to occur.
Biology Letters arrow_drop_down Biology LettersArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2016.0236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biology Letters arrow_drop_down Biology LettersArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2016.0236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, Denmark, United Kingdom, China (People's Republic of), United Kingdom, China (People's Republic of), United Kingdom, Australia, United StatesPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | Mapping Antarctic climate..., ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran... +1 projectsARC| Mapping Antarctic climate change in space and time using mosses as biological proxies ,ARC| Discovery Projects - Grant ID: DP130100250 ,ARC| Future Fellowships - Grant ID: FT140100596 ,ARC| Discovery Projects - Grant ID: DP150101491Adriana Vergés; Jonathan Lenoir; Marta A. Jarzyna; Timothy Clark; Alistair J. Hobday; Cecilia Villanueva; Simon Ferrier; Raquel A. Garcia; Raquel A. Garcia; Mao-Ning Tuanmu; I-Ching Chen; Hlif I. Linnetved; Stephen E. Williams; Julia L. Blanchard; Justine D. Shaw; Robert K. Colwell; Victoria Y. Martin; Brett R. Scheffers; Stewart Frusher; Nicola J. Mitchell; Lorena Falconi; Nathalie Pettorelli; Jan M. Strugnell; Jan M. Strugnell; Sarah Jennings; Sarah Jennings; Finn Danielsen; Phillipa C. McCormack; Timothy C. Bonebrake; Jennifer M. Sunday; Miguel B. Araújo; Miguel B. Araújo; Miguel B. Araújo; John M. Pandolfi; Gretta T. Pecl; Jan McDonald; Jan McDonald; Tero Mustonen; Roger Griffis; Ekaterina Popova; Johann D. Bell; Johann D. Bell; Charlene Janion-Scheepers; Sharon A. Robinson; Birgitta Evengård; Erik Wapstra; Cascade J. B. Sorte; Thomas Wernberg;Consequences of shifting species distributions Climate change is causing geographical redistribution of plant and animal species globally. These distributional shifts are leading to new ecosystems and ecological communities, changes that will affect human society. Pecl et al. review these current and future impacts and assess their implications for sustainable development goals. Science , this issue p. eaai9214
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/9zs4z8fbData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aai9214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,484 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 67visibility views 67 download downloads 46 Powered bymore_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/9zs4z8fbData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aai9214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:Wiley Shoo, Luke P.; Storlie, Collin; Vanderwal, Jeremy; Little, Jeremy; Williams, Stephen E.;Complex landscapes interact with meteorological processes to generate climatically suitable habitat (refuges) in otherwise hostile environments. Locating these refuges has practical importance in tropical montane regions where a high diversity of climatically specialized species is threatened by climate change. Here, we use a combination of weather data and spatial modeling to quantify thermally buffered environments in a regional tropical rainforest. We do this by constructing a spatial surface of maximum air temperature that takes into account important climate-mediating processes. We find a strong attenuating effect of elevation, distance from coast and foliage cover on maximum temperature. The core habitat of a disproportionately high number of endemic species (45%) is encompassed within just 25% of the coolest identified rainforest. We demonstrate how this data can be used to (i) identify important areas of cool habitat for protection and (ii) efficiently guide restoration in degraded landscapes to expand extant networks of critical cool habitat.
Global Change Biolog... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2010.02218.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2010.02218.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 AustraliaPublisher:MDPI AG Authors: Lily Leahy; Brett R. Scheffers; Stephen E. Williams; Alan N. Andersen;doi: 10.3390/d12120474
Anonychomyrma is a dolichoderine ant genus of cool-temperate Gondwanan origin with a current distribution that extends from the north of southern Australia into the Australasian tropics. Despite its abundance and ecological dominance, little is known of its species diversity and distribution throughout its range. Here, we describe the diversity and distribution of Anonychomyrma in the Australian Wet Tropics bioregion, where only two of the many putative species are described. We hypothesise that the genus in tropical Australia retains a preference for cool wet rainforests reminiscent of the Gondwanan forests that once dominated Australia, but now only exist in upland habitats of the Wet Tropics. Our study was based on extensive recent surveys across five subregions and along elevation and vertical (arboreal) gradients. We integrated genetic (CO1) data with morphology to recognise 22 species among our samples, 20 of which appeared to be undescribed. As predicted, diversity and endemism were concentrated in uplands above 900 m a.s.l. Distribution modelling of the nine commonest species identified maximum temperature of the warmest month, rainfall seasonality, and rainfall of the wettest month as correlates of distributional patterns across subregions. Our study supported the notion that Anonychomyrma radiated from a southern temperate origin into the tropical zone, with a preference for areas of montane rainforest that were stably cool and wet over the late quaternary.
Diversity arrow_drop_down DiversityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-2818/12/12/474/pdfData sources: Multidisciplinary Digital Publishing InstituteJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.3390/d12120474Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/d12120474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Diversity arrow_drop_down DiversityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-2818/12/12/474/pdfData sources: Multidisciplinary Digital Publishing InstituteJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.3390/d12120474Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/d12120474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Wiley Stephen E. Williams; April E. Reside; Justin A. Welbergen; Jeremy VanDerWal; Simon Ferrier; Ben L. Phillips; Ben L. Phillips; Grant Wardell-Johnson; Gunnar Keppel;doi: 10.1111/aec.12146
handle: 1959.8/159684 , 20.500.11937/19500
Identifying refugia is a critical component of effective conservation of biodiversity under anthropogenic climate change. However, despite a surge in conceptual and practical interest, identifying refugia remains a significant challenge across diverse continental landscapes. We provide an overview of the key properties of refugia that promote species' persistence under climate change, including their capacity to (i) buffer species from climate change; (ii) sustain long-term population viability and evolutionary processes; (iii) minimize the potential for deleterious species interactions, provided that the refugia are (iv) available and accessible to species under threat. Further, we classify refugia in terms of the environmental and biotic stressors that they provide protection from (i.e. thermal, hydric, cyclonic, pyric and biotic refugia), but ideally refugia should provide protection from a multitude of stressors. Our systematic characterization of refugia facilitates the identification of refugia in the Australian landscape. Challenges remain, however, specifically with respect to how to assess the quality of refugia at the level of individual species and whole species assemblages. It is essential that these challenges are overcome before refugia can live up to their acclaim as useful targets for conservation and management in the context of climate change.
Austral Ecology arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Austral Ecology arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Wiley Authors: Alejandro de la Fuente; Alejandro Navarro; Stephen E. Williams;doi: 10.1111/gcb.16608
pmid: 36654193
AbstractClimate‐driven biodiversity erosion is escalating at an alarming rate. The pressure imposed by climate change is exceptionally high in tropical ecosystems, where species adapted to narrow environmental ranges exhibit strong physiological constraints. Despite the observed detrimental effect of climate change on ecosystems at a global scale, our understanding of the extent to which multiple climatic drivers affect population dynamics is limited. Here, we disentangle the impact of different climatic stressors on 47 rainforest birds inhabiting the mountains of the Australian Wet Tropics using hierarchical population models. We estimate the effect of spatiotemporal changes in temperature, precipitation, heatwaves, droughts and cyclones on the population dynamics of rainforest birds between 2000 and 2016. We find a strong effect of warming and changes in rainfall patterns across the elevational‐segregated bird communities, with lowland populations benefiting from increasing temperature and precipitation, while upland species show an inverse strong negative response to the same drivers. Additionally, we find a negative effect of heatwaves on lowland populations, a pattern associated with the observed distribution of these extreme events across elevations. In contrast, cyclones and droughts have a marginal effect on spatiotemporal changes in rainforest bird communities, suggesting a species‐specific response unrelated to the elevational gradient. This study demonstrated the importance of unravelling the drivers of climate change impacts on population changes, providing significant insight into the mechanisms accelerating climate‐induced biodiversity degradation.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1111/gcb.16608Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1111/gcb.16608Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:Wiley Bell, Rayna C.; Parra, Juan L.; Tonione, Maria; Hoskin, Conrad J.; Mackenzie, Jason B.; Williams, Stephen E.; Moritz, Craig;Globally, montane tropical diversity is characterized by extraordinary local endemism that is not readily explained by current environmental variables indicating a strong imprint of history. Montane species often exist as isolated populations under current climatic conditions and may have remained isolated throughout recent climatic cycles, leading to substantial genetic and phenotypic divergence. Alternatively, populations may have become contiguous during colder climates resulting in less divergence. Here we compare responses to historical climate fluctuation in a montane specialist skink, Lampropholis robertsi, and its more broadly distributed congener, L. coggeri, both endemic to rainforests of northeast Australia. To do so, we combine spatial modelling of potential distributions under representative palaeoclimates, multi-locus phylogeography and analyses of phenotypic variation. Spatial modelling of L. robertsi predicts strong isolation among disjunct montane refugia during warm climates, but with potential for localized exchange during the most recent glacial period. In contrast, predicted stable areas are more widespread and connected in L. coggeri. Both species exhibit pronounced phylogeographic structuring for mitochondrial and nuclear genes, attesting to low dispersal and high persistence across multiple isolated regions. This is most prominent in L. robertsi, for which coalescent analyses indicate that most populations persisted in isolation throughout the climate cycles of the Pleistocene. Morphological divergence, principally in body size, is more evident among isolated populations of L. robertsi than L. coggeri. These results highlight the biodiversity value of isolated montane populations and support the general hypothesis that tropical montane regions harbour high levels of narrow-range taxa because of their resilience to past climate change.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/62006Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-294x.2010.04676.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 80 citations 80 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/62006Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-294x.2010.04676.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Ary A. Hoffmann; Paul D. Rymer; Margaret Byrne; Katinka X. Ruthrof; Jennie Whinam; Melodie McGeoch; Dana M. Bergstrom; Greg R. Guerin; Ben Sparrow; Leo Joseph; Sarah J. Hill; Nigel R. Andrew; James Camac; Nicholas Bell; Markus Riegler; Janet L. Gardner; Stephen E. Williams;doi: 10.1111/aec.12674
handle: 11343/284795 , 1959.7/uws:50865 , 1885/196492 , 2440/118567
AbstractThe effects of anthropogenic climate change on biodiversity are well known for some high‐profile Australian marine systems, including coral bleaching and kelp forest devastation. Less well‐published are the impacts of climate change being observed in terrestrial ecosystems, although ecological models have predicted substantial changes are likely. Detecting and attributing terrestrial changes to anthropogenic factors is difficult due to the ecological importance of extreme conditions, the noisy nature of short‐term data collected with limited resources, and complexities introduced by biotic interactions. Here, we provide a suite of case studies that have considered possible impacts of anthropogenic climate change on Australian terrestrial systems. Our intention is to provide a diverse collection of stories illustrating how Australian flora and fauna are likely responding to direct and indirect effects of anthropogenic climate change. We aim to raise awareness rather than be comprehensive. We include case studies covering canopy dieback in forests, compositional shifts in vegetation, positive feedbacks between climate, vegetation and disturbance regimes, local extinctions in plants, size changes in birds, phenological shifts in reproduction and shifting biotic interactions that threaten communities and endangered species. Some of these changes are direct and clear cut, others are indirect and less clearly connected to climate change; however, all are important in providing insights into the future state of terrestrial ecosystems. We also highlight some of the management issues relevant to conserving terrestrial communities and ecosystems in the face of anthropogenic climate change.
Australian National ... arrow_drop_down Australian Journal of EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian Journal of EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Publicly fundedStephen E. Williams; Alistair J. Hobday; Lorena Falconi; Jean‐Marc Hero; Neil J. Holbrook; Samantha Capon; Nick R. Bond; Scott D. Ling; Lesley Hughes;AbstractClimate change poses significant emerging risks to biodiversity, ecosystem function and associated socioecological systems. Adaptation responses must be initiated in parallel with mitigation efforts, but resources are limited. As climate risks are not distributed equally across taxa, ecosystems and processes, strategic prioritization of research that addresses stakeholder‐relevant knowledge gaps will accelerate effective uptake into adaptation policy and management action. After a decade of climate change adaptation research within the Australian National Climate Change Adaptation Research Facility, we synthesize the National Adaptation Research Plans for marine, terrestrial and freshwater ecosystems. We identify the key, globally relevant priorities for ongoing research relevant to informing adaptation policy and environmental management aimed at maximizing the resilience of natural ecosystems to climate change. Informed by both global literature and an extensive stakeholder consultation across all ecosystems, sectors and regions in Australia, involving thousands of participants, we suggest 18 priority research topics based on their significance, urgency, technical and economic feasibility, existing knowledge gaps and potential for cobenefits across multiple sectors. These research priorities provide a unified guide for policymakers, funding organizations and researchers to strategically direct resources, maximize stakeholder uptake of resulting knowledge and minimize the impacts of climate change on natural ecosystems. Given the pace of climate change, it is imperative that we inform and accelerate adaptation progress in all regions around the world.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/396384Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/396384Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Informa UK Limited Authors: Shoo, Luke P.; Anderson, Alex; Williams, Stephen E.;doi: 10.1071/mu08062
Subspecies amphochlora of the Lewin’s Honeyeater (Meliphaga lewinii) is confined to a small isolated population in the McIlwraith Range, Cape York Peninsula, north-eastern Australia. The population is poorly known but is thought to be restricted to elevations above 500 m. We aimed to establish reliable estimates of population size and geographical range to enable a better evaluation of the conservation status of the subspecies. We also sought to quantify elevational patterns of density within the range and test the hypothesis that climate is the dominant factor governing range limits. We estimate the area of occupancy to be 183 km2, pending the investigation of three small fragments of predicted suitable habitat in mountain ranges to the north of the McIlwraith Range. Our count data indicate that the population probably consists of fewer than 5000 individuals (best estimate = 4666 individuals, 95% confidence intervals (CI) = 2868–7591). Highest densities were observed in a geographically limited subset of the range above 650 m. Independent validation of our species-climate distribution model suggests that the restricted spatial distribution of the subspecies is attributable to climate associations and implies that warm temperatures in particular act to restrict the lower elevational limit of the subspecies. We discuss the implications of these findings for the future survival of M. l. amphochlora in the context of contemporary climate warming.
Emu - Austral Ornith... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mu08062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Emu - Austral Ornith... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/mu08062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:The Royal Society Funded by:ARC | Range dynamics and demogr..., ARC | Future Fellowships - Gran...ARC| Range dynamics and demographics of spatially structured populations under global change ,ARC| Future Fellowships - Grant ID: FT140101192Damien A. Fordham; Barry W. Brook; Conrad J. Hoskin; Robert L. Pressey; Jeremy VanDerWal; Stephen E. Williams;The effect of twenty-first-century climate change on biodiversity is commonly forecast based on modelled shifts in species ranges, linked to habitat suitability. These projections have been coupled with species–area relationships (SAR) to infer extinction rates indirectly as a result of the loss of climatically suitable areas and associated habitat. This approach does not model population dynamics explicitly, and so accepts that extinctions might occur after substantial (but unknown) delays—an extinction debt. Here we explicitly couple bioclimatic envelope models of climate and habitat suitability with generic life-history models for 24 species of frogs found in the Australian Wet Tropics (AWT). We show that (i) as many as four species of frogs face imminent extinction by 2080, due primarily to climate change; (ii) three frogs face delayed extinctions; and (iii) this extinction debt will take at least a century to be realized in full. Furthermore, we find congruence between forecast rates of extinction using SARs, and demographic models with an extinction lag of 120 years. We conclude that SAR approaches can provide useful advice to conservation on climate change impacts, provided there is a good understanding of the time lags over which delayed extinctions are likely to occur.
Biology Letters arrow_drop_down Biology LettersArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2016.0236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biology Letters arrow_drop_down Biology LettersArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2016.0236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, Denmark, United Kingdom, China (People's Republic of), United Kingdom, China (People's Republic of), United Kingdom, Australia, United StatesPublisher:American Association for the Advancement of Science (AAAS) Funded by:ARC | Mapping Antarctic climate..., ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran... +1 projectsARC| Mapping Antarctic climate change in space and time using mosses as biological proxies ,ARC| Discovery Projects - Grant ID: DP130100250 ,ARC| Future Fellowships - Grant ID: FT140100596 ,ARC| Discovery Projects - Grant ID: DP150101491Adriana Vergés; Jonathan Lenoir; Marta A. Jarzyna; Timothy Clark; Alistair J. Hobday; Cecilia Villanueva; Simon Ferrier; Raquel A. Garcia; Raquel A. Garcia; Mao-Ning Tuanmu; I-Ching Chen; Hlif I. Linnetved; Stephen E. Williams; Julia L. Blanchard; Justine D. Shaw; Robert K. Colwell; Victoria Y. Martin; Brett R. Scheffers; Stewart Frusher; Nicola J. Mitchell; Lorena Falconi; Nathalie Pettorelli; Jan M. Strugnell; Jan M. Strugnell; Sarah Jennings; Sarah Jennings; Finn Danielsen; Phillipa C. McCormack; Timothy C. Bonebrake; Jennifer M. Sunday; Miguel B. Araújo; Miguel B. Araújo; Miguel B. Araújo; John M. Pandolfi; Gretta T. Pecl; Jan McDonald; Jan McDonald; Tero Mustonen; Roger Griffis; Ekaterina Popova; Johann D. Bell; Johann D. Bell; Charlene Janion-Scheepers; Sharon A. Robinson; Birgitta Evengård; Erik Wapstra; Cascade J. B. Sorte; Thomas Wernberg;Consequences of shifting species distributions Climate change is causing geographical redistribution of plant and animal species globally. These distributional shifts are leading to new ecosystems and ecological communities, changes that will affect human society. Pecl et al. review these current and future impacts and assess their implications for sustainable development goals. Science , this issue p. eaai9214
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/9zs4z8fbData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aai9214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,484 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 67visibility views 67 download downloads 46 Powered bymore_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/9zs4z8fbData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aai9214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:Wiley Shoo, Luke P.; Storlie, Collin; Vanderwal, Jeremy; Little, Jeremy; Williams, Stephen E.;Complex landscapes interact with meteorological processes to generate climatically suitable habitat (refuges) in otherwise hostile environments. Locating these refuges has practical importance in tropical montane regions where a high diversity of climatically specialized species is threatened by climate change. Here, we use a combination of weather data and spatial modeling to quantify thermally buffered environments in a regional tropical rainforest. We do this by constructing a spatial surface of maximum air temperature that takes into account important climate-mediating processes. We find a strong attenuating effect of elevation, distance from coast and foliage cover on maximum temperature. The core habitat of a disproportionately high number of endemic species (45%) is encompassed within just 25% of the coolest identified rainforest. We demonstrate how this data can be used to (i) identify important areas of cool habitat for protection and (ii) efficiently guide restoration in degraded landscapes to expand extant networks of critical cool habitat.
Global Change Biolog... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2010.02218.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2010.02218.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 AustraliaPublisher:MDPI AG Authors: Lily Leahy; Brett R. Scheffers; Stephen E. Williams; Alan N. Andersen;doi: 10.3390/d12120474
Anonychomyrma is a dolichoderine ant genus of cool-temperate Gondwanan origin with a current distribution that extends from the north of southern Australia into the Australasian tropics. Despite its abundance and ecological dominance, little is known of its species diversity and distribution throughout its range. Here, we describe the diversity and distribution of Anonychomyrma in the Australian Wet Tropics bioregion, where only two of the many putative species are described. We hypothesise that the genus in tropical Australia retains a preference for cool wet rainforests reminiscent of the Gondwanan forests that once dominated Australia, but now only exist in upland habitats of the Wet Tropics. Our study was based on extensive recent surveys across five subregions and along elevation and vertical (arboreal) gradients. We integrated genetic (CO1) data with morphology to recognise 22 species among our samples, 20 of which appeared to be undescribed. As predicted, diversity and endemism were concentrated in uplands above 900 m a.s.l. Distribution modelling of the nine commonest species identified maximum temperature of the warmest month, rainfall seasonality, and rainfall of the wettest month as correlates of distributional patterns across subregions. Our study supported the notion that Anonychomyrma radiated from a southern temperate origin into the tropical zone, with a preference for areas of montane rainforest that were stably cool and wet over the late quaternary.
Diversity arrow_drop_down DiversityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-2818/12/12/474/pdfData sources: Multidisciplinary Digital Publishing InstituteJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.3390/d12120474Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/d12120474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Diversity arrow_drop_down DiversityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-2818/12/12/474/pdfData sources: Multidisciplinary Digital Publishing InstituteJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.3390/d12120474Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/d12120474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Wiley Stephen E. Williams; April E. Reside; Justin A. Welbergen; Jeremy VanDerWal; Simon Ferrier; Ben L. Phillips; Ben L. Phillips; Grant Wardell-Johnson; Gunnar Keppel;doi: 10.1111/aec.12146
handle: 1959.8/159684 , 20.500.11937/19500
Identifying refugia is a critical component of effective conservation of biodiversity under anthropogenic climate change. However, despite a surge in conceptual and practical interest, identifying refugia remains a significant challenge across diverse continental landscapes. We provide an overview of the key properties of refugia that promote species' persistence under climate change, including their capacity to (i) buffer species from climate change; (ii) sustain long-term population viability and evolutionary processes; (iii) minimize the potential for deleterious species interactions, provided that the refugia are (iv) available and accessible to species under threat. Further, we classify refugia in terms of the environmental and biotic stressors that they provide protection from (i.e. thermal, hydric, cyclonic, pyric and biotic refugia), but ideally refugia should provide protection from a multitude of stressors. Our systematic characterization of refugia facilitates the identification of refugia in the Australian landscape. Challenges remain, however, specifically with respect to how to assess the quality of refugia at the level of individual species and whole species assemblages. It is essential that these challenges are overcome before refugia can live up to their acclaim as useful targets for conservation and management in the context of climate change.
Austral Ecology arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Austral Ecology arrow_drop_down UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs RepositoryJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu