- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Institution of Engineering and Technology (IET) Authors: Neeraj Priyadarshi; Pandav Kiran Maroti; Mohamed G. Hussien;AbstractThis research paper deals the practical performance analysis of Permanent Magnet Synchronous Motor (PMSM) drives‐based photovoltaic (PV) pumping applications. A modified firefly algorithm (MFA) based maximum power point tracker (MPPT) with Luo converter is employed. In this research work, equated to classical Firefly algorithm, the degree of attractiveness (α) has been updated in each iteration number with rejection of coefficients of absorption (β) as well as random movement factor (γ) to achieve faster PV tracked efficiency with rapid convergence velocity. Vector‐oriented inverter control strategy depending on solar irradiance has been used for controlling the rate of converter/water flow. The proposed standalone PV pumping system has been tested under highly weather fluctuating conditions which provide efficient, accurate and feasible option for water pumping in remote areas. Experimental results have been justified using dSPACE (DS1104) practical environment.
IET Renewable Power ... arrow_drop_down IET Renewable Power GenerationArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IET Renewable Power ... arrow_drop_down IET Renewable Power GenerationArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Contribution for newspaper or weekly magazine , Article 2017 Italy, DenmarkPublisher:IEEE Authors: Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar; Blaabjerg, Frede; +3 AuthorsMaroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar; Blaabjerg, Frede; Ramachandaramurthy, Vigna K.; Siano, Pierluigi; Fedák, Viliam;handle: 11386/4719968
In this paper Multistage Switched Inductor Boost Converter (Multistage SIBC) is uttered for renewable energy applications. The projected converter is derived from an amalgamation of the conventional step-up converter and inductor stack. The number of inductor and duty ratio decides the overall voltage gain of the projected converter. The projected converter consists of only one controlled power semiconductor device. The 50 KHz frequency is adopted to reduce the L, C value and to suppress the output waveform ripples. The analysis and working of projected converter is discussed in detail. Simulation of the projected converter for three stages is done in Matlab/Simulink (version-2016) and the results are verified with theoretical values.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research PortalArchivio della Ricerca - Università di SalernoConference object . 2018Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cencon.2017.8262504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research PortalArchivio della Ricerca - Università di SalernoConference object . 2018Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cencon.2017.8262504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Contribution for newspaper or weekly magazine , Article 2017 DenmarkPublisher:IEEE Authors: Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Wheeler, Patrick; Blaabjerg, Frede; +1 AuthorsMaroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Wheeler, Patrick; Blaabjerg, Frede; Rivera, Marco;The proposed exertion represents the modified high voltage conversion Cuk converter for renewable energy application. The proposed Cuk converter is a combination of the conventional boost converter and Cuk converter. The arrangement of the proposed converter make, such as, it becomes the single controlled device DC-DC topology. The voltage conversion ratio of proposed converter has increased by ten times of the conventional Cuk converterat a duty ratio of 90%. The detailed analysis of the voltage conversion ratio and losses occur due to internal resistance of components is done in the paper. The current conversion ratio of proposed converter is discussed in the paper. The proposed converter is simulated in MatLab Simulink (2014) for 100W and regulated 10V input DC supply. The simulation results represent the existence and working of the proposed converter.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/spec.2017.8333675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/spec.2017.8333675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 QatarPublisher:Institution of Engineering and Technology (IET) Authors: Pandav Kiran Maroti; Soroush Esmaeili; Atif Iqbal; Mohammad Meraj;handle: 10576/29112
A new non‐isolated high‐voltage gain single switch quadratic modified single‐ended primary‐inductor capacitor (SEPIC) DC–DC converter is proposed in this study. The proposed converter consists of a modified SEPIC converter along with a boosting module to obtain a high‐voltage gain at a low‐duty ratio. It has all advantages of the SEPIC converter such as continuous input current, which makes it applicable for renewable energy sources such as photovoltaic systems. The proposed converter is able to attain a higher voltage gain in comparison with similar previous transformer‐less DC–DC converters. Also, unlike high‐voltage transformer‐based DC–DC converters, it does not suffer from leakage inductances. Also, the proposed converter presents low‐voltage stress across the switch and output diode. The proposed converter is controlled through a single switch and there is no limitation for a range of duty ratios. The voltage gain analysis of the proposed converter is done in continuous conduction mode and discontinuous conduction mode, also comparative analysis is done with the existing topologies with similar features. The proposed converter is designed for 400 V DC microgrid applications. The theoretical analysis of the proposed converter is verified by the experimental investigation in the laboratory.
IET Power Electronic... arrow_drop_down IET Power ElectronicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQatar University Institutional RepositoryArticle . 2020Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-pel.2020.0147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IET Power Electronic... arrow_drop_down IET Power ElectronicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQatar University Institutional RepositoryArticle . 2020Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-pel.2020.0147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 QatarPublisher:IEEE Authors: Gore, S.; Maroti, Pandav Kiran; Al-Hitmi, Mohammed; Iqbal, Atif;handle: 10576/29161
The paper proposes a dual output DC-DC converter for electric vehicle battery charging application from the PV source. The proposed converter is derived from modified SEPIC Converter (converter-A) and multilevel boost converter (converter-B) in such way that both converter share common input source as PV. Generally, the voltage of PV is low and series and parallel combination of PV module is not a practicable solution to accomplish high voltage demand of electric vehicle charging station. Therefore, the high gain DC-DC plays a vital in PV integrated electric vehicle charging station from low to high voltage conversion. However, with dual output capability and single switch controlled structure make the proposed converter a superior choice for PV integrated EV charging station. In addition, the same or different rated output can be achieved with proper selection of duty ratio. The working principle with characteristics waveform and mathematical analysis of voltage gain are discussed in detail. The proposed converter is simulated in MatLab 2018a and obtained simulation result proves the mathematical analysis and functionality of the converter.
Qatar University Ins... arrow_drop_down Qatar University Institutional RepositoryConference object . 2019Data sources: Qatar University Institutional Repositoryhttps://doi.org/10.1109/icpeca...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpeca47973.2019.8975531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Qatar University Ins... arrow_drop_down Qatar University Institutional RepositoryConference object . 2019Data sources: Qatar University Institutional Repositoryhttps://doi.org/10.1109/icpeca...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpeca47973.2019.8975531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Contribution for newspaper or weekly magazine , Article 2017 Denmark, ItalyPublisher:IEEE Authors: Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar; Blaabjerg, Frede; +3 AuthorsMaroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar; Blaabjerg, Frede; Ramachandaramurthy, Vigna K.; Siano, Pierluigi; Fedak, Viliam;handle: 11386/4719966
The projected 2L-Y DC-DC Converter topologies are new members of the XY converter family. The 2L-Y converter is a combination of two single stage converters consisting, one is 2L converter and another is Y converter. Based on the configuration of Y converter four new topologies called a 2L-LVD converter, 2L-2LVD converter, 2L-2LCVD converter and 2L-2LCmVD converter are derived, discussed and analyzed in this paper. Due to higher conversion ratio capability of the proposed 2L-Y converter, it provides a workable solution for photovoltaic and electrical drive applications. The striking features of 2L-Y converter topologies are only one controlled device, negative output, Transformer-less topology, compact structure and having a minimum internal resistance. The proposed 2L-Y converters are simulated into MATLAB and simulation results are confirmed the theoretical analysis.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research PortalArchivio della Ricerca - Università di SalernoConference object . 2018Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cencon.2017.8262506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research PortalArchivio della Ricerca - Università di SalernoConference object . 2018Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cencon.2017.8262506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Qatar, Qatar, DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Holm-Nielsen, Jens Bo; Bhaskar, Mahajan Sagar; +2 AuthorsMaroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Holm-Nielsen, Jens Bo; Bhaskar, Mahajan Sagar; Meraj, Mohammad; Iqbal, Atif;handle: 10576/15490
The paper proposes a new structure of SEPIC with high voltage gain for renewable energy applications. The proposed circuit is designed by amalgamating the conventional SEPIC with a boosting module. Therefore, the converter benefits from various advantages that the SEPIC converter has, such as continuous input current. Also, high voltage gain and input current continuity make the presented converter suitable for renewable energy sources. The modified SEPIC converter (MSC) provides higher voltage gain compared to the conventional SEPIC and recently addressed converters with a single-controlled switch. The analysis of voltage gain in continuous current mode (CCM) and discontinuous current mode (DCM) is analyzed by considering the non-idealities of the semiconductor devices and passive components. The selection of the semiconductor devices depending on the voltage-current rating is presented along with the designing of reactive components. The numerical simulation and experimental work are carried out, and the obtained results prove the feasibility of the MSC concept and the theoretical analysis.
IEEE Access arrow_drop_down Qatar University Institutional RepositoryArticle . 2019Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2925564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 108 citations 108 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Access arrow_drop_down Qatar University Institutional RepositoryArticle . 2019Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2925564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 DenmarkPublisher:MDPI AG Davood Ghaderi; Pandav Kiran Maroti; P. Sanjeevikumar; Jens Bo Holm-Nielsen; Eklas Hossain; Anand Nayyar;doi: 10.3390/app10010102
Solar energy is one of the most important renewable sources due to its advantages such as simple structure, convenient installation, diverse applications, and low maintenance costs. Low power generation is the main concern with solar panels, so the maximum transmission of this power is a prime priority. The design of boost converters with the ability to generate high voltage gain, efficient structure, and stable and low-cost control circuits is the first step after installing these panels. This study presents a simple and high-gain design of a step-up converter, which uses only one power switch. The significance of this issue is when it will be apparent to know that each switch needs a separate control circuit and complex systems require more control topologies. In comparison with the conventional converter, the gain of the proposed converter, with the use of two additional diodes, a capacitor, and an inductor, was five times greater than the gain of a classical converter with 80% of the duty cycle. The proposed converter can solve the narrow turn-off period problem for the power semiconductor components in order to achieve higher DC voltages that are possible at higher duty cycles in classical converters. Small signal analysis of the proposed converter is presented and a controller based on steady-space matrixes is presented. The reaction of the proposed controller is considerable since a deep mathematical analysis supports this controller. The principal operations of the proposed converter and the projected controller were analyzed mathematically and verified with the help of MATLAB/SIMULINK. Additionally, hardware implementation of the proposed converter was done on a laboratory-scale around 100 W.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/1/102/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10010102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/1/102/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10010102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Contribution for newspaper or weekly magazine , Other literature type 2017 DenmarkPublisher:IEEE Authors: Bhaskar , Mahajan Sagar; Padmanaban, Sanjeevikumar; Maroti, Pandav Kiran; Fedák, Viliam; +2 AuthorsBhaskar , Mahajan Sagar; Padmanaban, Sanjeevikumar; Maroti, Pandav Kiran; Fedák, Viliam; Blaabjerg, Frede; Ramachandaramurthy, Vigna K.;New members of XY converter family topologies are proposed in this treatise for a high-voltage/low-current renewable application. Based on the X Converter, the whole existing X-Y Converter family is categorized into four categories; L-Y, 2L-Y, 2LC-Y and 2LCm-Y converter. Four new 2LC-Y topologies (2LC-LVD, 2LC-2LVD, 2LC-2LCVD and 2LC-2LCmVD) converters are presented in this treatise which offer an effective solution for renewable applications requiring a very high voltage conversion ratio such as a Photovoltaic Multilevel Inverter (PV-MLI) system, hybrid electrical drives and automotive applications. The noticeable features of the proposed 2LC-Y converter topologies are: i) Only one power control switch and input source; ii) High negative output voltage with moderate duty ratio; iii) Low output current and minimal internal resistance; iv) Transformer-less converter topologies; v) High voltage conversion ratio; vi) Minimal number of power devices and components. Working and output voltage analysis of the proposed 2LC-Y converter topologies are discussed in details. The MATLAB simulation results are provided and good agreement with theoretical analysis is shown. Simulation results also validate the performance and functionality of the proposed 2LC-Y converter topologies of the XY converter family.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/edpe.2017.8123270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/edpe.2017.8123270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Contribution for newspaper or weekly magazine , Article 2019 DenmarkPublisher:IEEE Authors: Sanjeevikumar, Padmanaban; Kiran Maroti, Pandav; Holm-Nielsen, Jens Bo; Blaabjerg, Frede; +2 AuthorsSanjeevikumar, Padmanaban; Kiran Maroti, Pandav; Holm-Nielsen, Jens Bo; Blaabjerg, Frede; Leonowicz, Zbigniew; Yaramasu, Venkata;In this paper, a single stage Quazi Z-Source (qZS) with active switched inductor based high gain DC-DC converter is proposed for grid-connected photovoltaic system. The active switched inductor structure contributes the additional gain factor in the existed qZS DC-DC converter. Whereas, the proposed converter possessing continuous input current and achieve the high voltage gain at lower duty ratio in a single stage. The operating principle of proposed single stage converter in shoot through and non-shoot through state with respect to characteristics waveform depicted in this article. The detail mathematical analysis with consideration of non-idealities and designing equations of active (L and C) components are derived based on the theoretical hypotheses. The proposed converter simulated in Matlab simulation software and results are validating the functionality of theoretical predictions.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/eeeic....Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefAalborg University Research PortalContribution for newspaper or weekly magazine . 2019Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/eeeic.2019.8783239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/eeeic....Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefAalborg University Research PortalContribution for newspaper or weekly magazine . 2019Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/eeeic.2019.8783239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Institution of Engineering and Technology (IET) Authors: Neeraj Priyadarshi; Pandav Kiran Maroti; Mohamed G. Hussien;AbstractThis research paper deals the practical performance analysis of Permanent Magnet Synchronous Motor (PMSM) drives‐based photovoltaic (PV) pumping applications. A modified firefly algorithm (MFA) based maximum power point tracker (MPPT) with Luo converter is employed. In this research work, equated to classical Firefly algorithm, the degree of attractiveness (α) has been updated in each iteration number with rejection of coefficients of absorption (β) as well as random movement factor (γ) to achieve faster PV tracked efficiency with rapid convergence velocity. Vector‐oriented inverter control strategy depending on solar irradiance has been used for controlling the rate of converter/water flow. The proposed standalone PV pumping system has been tested under highly weather fluctuating conditions which provide efficient, accurate and feasible option for water pumping in remote areas. Experimental results have been justified using dSPACE (DS1104) practical environment.
IET Renewable Power ... arrow_drop_down IET Renewable Power GenerationArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IET Renewable Power ... arrow_drop_down IET Renewable Power GenerationArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Contribution for newspaper or weekly magazine , Article 2017 Italy, DenmarkPublisher:IEEE Authors: Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar; Blaabjerg, Frede; +3 AuthorsMaroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar; Blaabjerg, Frede; Ramachandaramurthy, Vigna K.; Siano, Pierluigi; Fedák, Viliam;handle: 11386/4719968
In this paper Multistage Switched Inductor Boost Converter (Multistage SIBC) is uttered for renewable energy applications. The projected converter is derived from an amalgamation of the conventional step-up converter and inductor stack. The number of inductor and duty ratio decides the overall voltage gain of the projected converter. The projected converter consists of only one controlled power semiconductor device. The 50 KHz frequency is adopted to reduce the L, C value and to suppress the output waveform ripples. The analysis and working of projected converter is discussed in detail. Simulation of the projected converter for three stages is done in Matlab/Simulink (version-2016) and the results are verified with theoretical values.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research PortalArchivio della Ricerca - Università di SalernoConference object . 2018Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cencon.2017.8262504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research PortalArchivio della Ricerca - Università di SalernoConference object . 2018Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cencon.2017.8262504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Contribution for newspaper or weekly magazine , Article 2017 DenmarkPublisher:IEEE Authors: Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Wheeler, Patrick; Blaabjerg, Frede; +1 AuthorsMaroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Wheeler, Patrick; Blaabjerg, Frede; Rivera, Marco;The proposed exertion represents the modified high voltage conversion Cuk converter for renewable energy application. The proposed Cuk converter is a combination of the conventional boost converter and Cuk converter. The arrangement of the proposed converter make, such as, it becomes the single controlled device DC-DC topology. The voltage conversion ratio of proposed converter has increased by ten times of the conventional Cuk converterat a duty ratio of 90%. The detailed analysis of the voltage conversion ratio and losses occur due to internal resistance of components is done in the paper. The current conversion ratio of proposed converter is discussed in the paper. The proposed converter is simulated in MatLab Simulink (2014) for 100W and regulated 10V input DC supply. The simulation results represent the existence and working of the proposed converter.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/spec.2017.8333675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/spec.2017.8333675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 QatarPublisher:Institution of Engineering and Technology (IET) Authors: Pandav Kiran Maroti; Soroush Esmaeili; Atif Iqbal; Mohammad Meraj;handle: 10576/29112
A new non‐isolated high‐voltage gain single switch quadratic modified single‐ended primary‐inductor capacitor (SEPIC) DC–DC converter is proposed in this study. The proposed converter consists of a modified SEPIC converter along with a boosting module to obtain a high‐voltage gain at a low‐duty ratio. It has all advantages of the SEPIC converter such as continuous input current, which makes it applicable for renewable energy sources such as photovoltaic systems. The proposed converter is able to attain a higher voltage gain in comparison with similar previous transformer‐less DC–DC converters. Also, unlike high‐voltage transformer‐based DC–DC converters, it does not suffer from leakage inductances. Also, the proposed converter presents low‐voltage stress across the switch and output diode. The proposed converter is controlled through a single switch and there is no limitation for a range of duty ratios. The voltage gain analysis of the proposed converter is done in continuous conduction mode and discontinuous conduction mode, also comparative analysis is done with the existing topologies with similar features. The proposed converter is designed for 400 V DC microgrid applications. The theoretical analysis of the proposed converter is verified by the experimental investigation in the laboratory.
IET Power Electronic... arrow_drop_down IET Power ElectronicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQatar University Institutional RepositoryArticle . 2020Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-pel.2020.0147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IET Power Electronic... arrow_drop_down IET Power ElectronicsArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQatar University Institutional RepositoryArticle . 2020Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-pel.2020.0147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 QatarPublisher:IEEE Authors: Gore, S.; Maroti, Pandav Kiran; Al-Hitmi, Mohammed; Iqbal, Atif;handle: 10576/29161
The paper proposes a dual output DC-DC converter for electric vehicle battery charging application from the PV source. The proposed converter is derived from modified SEPIC Converter (converter-A) and multilevel boost converter (converter-B) in such way that both converter share common input source as PV. Generally, the voltage of PV is low and series and parallel combination of PV module is not a practicable solution to accomplish high voltage demand of electric vehicle charging station. Therefore, the high gain DC-DC plays a vital in PV integrated electric vehicle charging station from low to high voltage conversion. However, with dual output capability and single switch controlled structure make the proposed converter a superior choice for PV integrated EV charging station. In addition, the same or different rated output can be achieved with proper selection of duty ratio. The working principle with characteristics waveform and mathematical analysis of voltage gain are discussed in detail. The proposed converter is simulated in MatLab 2018a and obtained simulation result proves the mathematical analysis and functionality of the converter.
Qatar University Ins... arrow_drop_down Qatar University Institutional RepositoryConference object . 2019Data sources: Qatar University Institutional Repositoryhttps://doi.org/10.1109/icpeca...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpeca47973.2019.8975531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Qatar University Ins... arrow_drop_down Qatar University Institutional RepositoryConference object . 2019Data sources: Qatar University Institutional Repositoryhttps://doi.org/10.1109/icpeca...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpeca47973.2019.8975531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Contribution for newspaper or weekly magazine , Article 2017 Denmark, ItalyPublisher:IEEE Authors: Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar; Blaabjerg, Frede; +3 AuthorsMaroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar; Blaabjerg, Frede; Ramachandaramurthy, Vigna K.; Siano, Pierluigi; Fedak, Viliam;handle: 11386/4719966
The projected 2L-Y DC-DC Converter topologies are new members of the XY converter family. The 2L-Y converter is a combination of two single stage converters consisting, one is 2L converter and another is Y converter. Based on the configuration of Y converter four new topologies called a 2L-LVD converter, 2L-2LVD converter, 2L-2LCVD converter and 2L-2LCmVD converter are derived, discussed and analyzed in this paper. Due to higher conversion ratio capability of the proposed 2L-Y converter, it provides a workable solution for photovoltaic and electrical drive applications. The striking features of 2L-Y converter topologies are only one controlled device, negative output, Transformer-less topology, compact structure and having a minimum internal resistance. The proposed 2L-Y converters are simulated into MATLAB and simulation results are confirmed the theoretical analysis.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research PortalArchivio della Ricerca - Università di SalernoConference object . 2018Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cencon.2017.8262506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research PortalArchivio della Ricerca - Università di SalernoConference object . 2018Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cencon.2017.8262506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Qatar, Qatar, DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Holm-Nielsen, Jens Bo; Bhaskar, Mahajan Sagar; +2 AuthorsMaroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Holm-Nielsen, Jens Bo; Bhaskar, Mahajan Sagar; Meraj, Mohammad; Iqbal, Atif;handle: 10576/15490
The paper proposes a new structure of SEPIC with high voltage gain for renewable energy applications. The proposed circuit is designed by amalgamating the conventional SEPIC with a boosting module. Therefore, the converter benefits from various advantages that the SEPIC converter has, such as continuous input current. Also, high voltage gain and input current continuity make the presented converter suitable for renewable energy sources. The modified SEPIC converter (MSC) provides higher voltage gain compared to the conventional SEPIC and recently addressed converters with a single-controlled switch. The analysis of voltage gain in continuous current mode (CCM) and discontinuous current mode (DCM) is analyzed by considering the non-idealities of the semiconductor devices and passive components. The selection of the semiconductor devices depending on the voltage-current rating is presented along with the designing of reactive components. The numerical simulation and experimental work are carried out, and the obtained results prove the feasibility of the MSC concept and the theoretical analysis.
IEEE Access arrow_drop_down Qatar University Institutional RepositoryArticle . 2019Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2925564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 108 citations 108 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Access arrow_drop_down Qatar University Institutional RepositoryArticle . 2019Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2925564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 DenmarkPublisher:MDPI AG Davood Ghaderi; Pandav Kiran Maroti; P. Sanjeevikumar; Jens Bo Holm-Nielsen; Eklas Hossain; Anand Nayyar;doi: 10.3390/app10010102
Solar energy is one of the most important renewable sources due to its advantages such as simple structure, convenient installation, diverse applications, and low maintenance costs. Low power generation is the main concern with solar panels, so the maximum transmission of this power is a prime priority. The design of boost converters with the ability to generate high voltage gain, efficient structure, and stable and low-cost control circuits is the first step after installing these panels. This study presents a simple and high-gain design of a step-up converter, which uses only one power switch. The significance of this issue is when it will be apparent to know that each switch needs a separate control circuit and complex systems require more control topologies. In comparison with the conventional converter, the gain of the proposed converter, with the use of two additional diodes, a capacitor, and an inductor, was five times greater than the gain of a classical converter with 80% of the duty cycle. The proposed converter can solve the narrow turn-off period problem for the power semiconductor components in order to achieve higher DC voltages that are possible at higher duty cycles in classical converters. Small signal analysis of the proposed converter is presented and a controller based on steady-space matrixes is presented. The reaction of the proposed controller is considerable since a deep mathematical analysis supports this controller. The principal operations of the proposed converter and the projected controller were analyzed mathematically and verified with the help of MATLAB/SIMULINK. Additionally, hardware implementation of the proposed converter was done on a laboratory-scale around 100 W.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/1/102/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10010102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/1/102/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10010102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Contribution for newspaper or weekly magazine , Other literature type 2017 DenmarkPublisher:IEEE Authors: Bhaskar , Mahajan Sagar; Padmanaban, Sanjeevikumar; Maroti, Pandav Kiran; Fedák, Viliam; +2 AuthorsBhaskar , Mahajan Sagar; Padmanaban, Sanjeevikumar; Maroti, Pandav Kiran; Fedák, Viliam; Blaabjerg, Frede; Ramachandaramurthy, Vigna K.;New members of XY converter family topologies are proposed in this treatise for a high-voltage/low-current renewable application. Based on the X Converter, the whole existing X-Y Converter family is categorized into four categories; L-Y, 2L-Y, 2LC-Y and 2LCm-Y converter. Four new 2LC-Y topologies (2LC-LVD, 2LC-2LVD, 2LC-2LCVD and 2LC-2LCmVD) converters are presented in this treatise which offer an effective solution for renewable applications requiring a very high voltage conversion ratio such as a Photovoltaic Multilevel Inverter (PV-MLI) system, hybrid electrical drives and automotive applications. The noticeable features of the proposed 2LC-Y converter topologies are: i) Only one power control switch and input source; ii) High negative output voltage with moderate duty ratio; iii) Low output current and minimal internal resistance; iv) Transformer-less converter topologies; v) High voltage conversion ratio; vi) Minimal number of power devices and components. Working and output voltage analysis of the proposed 2LC-Y converter topologies are discussed in details. The MATLAB simulation results are provided and good agreement with theoretical analysis is shown. Simulation results also validate the performance and functionality of the proposed 2LC-Y converter topologies of the XY converter family.
Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/edpe.2017.8123270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2017Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/edpe.2017.8123270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Contribution for newspaper or weekly magazine , Article 2019 DenmarkPublisher:IEEE Authors: Sanjeevikumar, Padmanaban; Kiran Maroti, Pandav; Holm-Nielsen, Jens Bo; Blaabjerg, Frede; +2 AuthorsSanjeevikumar, Padmanaban; Kiran Maroti, Pandav; Holm-Nielsen, Jens Bo; Blaabjerg, Frede; Leonowicz, Zbigniew; Yaramasu, Venkata;In this paper, a single stage Quazi Z-Source (qZS) with active switched inductor based high gain DC-DC converter is proposed for grid-connected photovoltaic system. The active switched inductor structure contributes the additional gain factor in the existed qZS DC-DC converter. Whereas, the proposed converter possessing continuous input current and achieve the high voltage gain at lower duty ratio in a single stage. The operating principle of proposed single stage converter in shoot through and non-shoot through state with respect to characteristics waveform depicted in this article. The detail mathematical analysis with consideration of non-idealities and designing equations of active (L and C) components are derived based on the theoretical hypotheses. The proposed converter simulated in Matlab simulation software and results are validating the functionality of theoretical predictions.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/eeeic....Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefAalborg University Research PortalContribution for newspaper or weekly magazine . 2019Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/eeeic.2019.8783239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/eeeic....Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefAalborg University Research PortalContribution for newspaper or weekly magazine . 2019Data sources: Aalborg University Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/eeeic.2019.8783239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu