- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: R. Couturier; C. Bouquet; Olivier Raccurt; C. Delord;AbstractBy means of large mirrors, CSP (Concentrated Solar Power) technologies concentrate the solar energy on an absorber where it is collected as thermal energy. The decrease of the kWh cost and the insurance of a 25 years lifetime minimum are the key points to make these technologies cost competitive and ensure their large deployment. The solar field is the first expense item (20 to 30% of the investment) and is composed by the reflectors which concentrate the solar flux on the absorber. The durability of the mirrors is therefore of principal interest and has to be studied since the conception of the power plant. Actually, the majority of this technology uses glass mirrors made with silver and copper layers for a high reflectance. The protection of the silver layer from oxidation is ensured both by the copper layer and backside paint. In service conditions, the mirrors are submitted to arid climate where temperature, humidity and solar irradiation are extreme. Accelerated climatic tests in controlled environment are used to create the same degradations than the ones happening on site. Specular reflectance being the primary function of the mirrors, this is the parameter usually characterized to evaluate the aging of a mirror. Depending on the aging test and specifically for outdoor exposure, it might take a long time before a loss of reflectance occurs. We present here a new methodology based on the monitoring of the protective back layer degradation that can be used to anticipate the reflectance loss. Based on the activated energy calculated via an Arrhenius law, the lifetime prediction in normal condition can be established.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Olivier Raccurt; Angela Disdier; Christine Delord; R. Girard;AbstractThe degradation of solar glass mirrors is analyzed as a function of various constraints such as temperature, humidity, rain and solar irradiation. In order to understand the degradation mechanisms, two kinds of tests have been performed: simple tests to identify the effect of each constraint and complex tests to highlight the effects of synergy and to reproduce the natural ageing. The study of the paints coat degradation evidences that UV exposure is one of the most aggressive constraints for paint binder. But results show also a strong effect of liquid water on paint degradation and particularly on pigments loss and blistering phenomenon. Whereas temperature in dry environment is not a very degrading factor for coats, presence of liquid water is a strong accelerating constraint at high temperature. Agreement between outdoor ageing and indoor ageing with a new procedure involving UV, temperature and rain also shows that liquid water is the critical constraint responsible to edge corrosion of silver layer and paint delamination. This work shows also that relation between paint degradation and corrosion of silver layer is not obvious. Homogeneous corrosion by pitting was observed without any deep chemical deterioration of the paint coat system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:ANR | DURASOLANR| DURASOLSandrine Therias; Jean-Luc Gardette; Olivier Raccurt; Coralie Avenel; Coralie Avenel;AbstractThe durability of solar mirrors is a critical factor for the deployment of concentrating solar power plants. Accelerated aging test models currently applied in the polymer, electronic, and photovoltaic fields have recently been reviewed, and the issues of their application to solar mirrors have been discussed. This article first reports the results of temperature, humidity, and light irradiance accelerated aging tests performed to assess the dependent parameters of selected models from the literature. These parameters include the apparent activation energy for the Arrhenius temperature law, the Peck and Eyring coefficients for humidity models and the Schwarzschild coefficient for the irradiance law. The experimental values were then assessed for specular reflectance loss of solar mirrors. Finally, using these parameters, acceleration factors were calculated for solar mirrors. An effective temperature considering the Arrhenius degradation law was used rather than the commonly used mean temperature. This question is also addressed for light irradiance by using the dose instead of the mean value.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.uca.fr/hal-03020373/documentData sources: Hyper Article en LigneUniversité Grenoble Alpes: HALArticle . 2019Full-Text: https://uca.hal.science/hal-03020373Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2019Full-Text: https://uca.hal.science/hal-03020373Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41529-019-0089-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.uca.fr/hal-03020373/documentData sources: Hyper Article en LigneUniversité Grenoble Alpes: HALArticle . 2019Full-Text: https://uca.hal.science/hal-03020373Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2019Full-Text: https://uca.hal.science/hal-03020373Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41529-019-0089-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | INSHIP, EC | STAGE-STEEC| INSHIP ,EC| STAGE-STEE. Le Baron; O. Raccurt; P. Giraud; M. Adier; J. Barriga; B. Diaz; P. Echegut; D. De Sousa Meneses; C. Capiani; D. Sciti; A. Soum-Glaude; C. Escape; I. Jerman; G.A. López; T. Echániz; M.J. Tello; F. Matino; A. Maccari; L. Mercatelli; E. Sani;CSP (Concentrated Solar Power) plants technologies use the concentration of solar energy on a receiver to produce heat and then electricity by a thermodynamical process. A solar absorber material is used to convert the energy carried by light into heat. This type of material works at high temperatures (up to 1000 °C) under a highly concentrated solar flux (up to x1000 or more). Optical properties determine the performance of absorbers and it is thus necessary to measure their spectral absorptance and emittance. Solar absorptance is directly linked to the capacity of the absorber material to convert the solar flux into heat. Emittance drives the radiative thermal losses for the heated absorber and depends on the absorber temperature. The characterization of a material in operational conditions at high temperatures requires advanced apparatuses, and different measurement methods exist for the characterization of these two quantities of relevance regarding an absorber. A Round Robin Test (RRT) was conducted with the objective of comparing different new optical apparatuses and methods for measuring the emittance or luminance of various solar absorbers in air. Measurements were carried out directly at temperatures up to 560 °C while heating the samples, and also indirectly by hemispherical reflectance measurements at room temperature. In this paper, the Round Robin Test procedure to compare apparatuses is described, as well as the corresponding reflectance and emittance results on four types of materials. In addition, a discussion of some factors of influence over high temperature measurements in air and of the observed discrepancies among results from the evaluators is presented. The reliability of reflectance/emittance measurements is also demonstrated and statistics of deviations from the mean value are analysed. These allow us to infer information about measurement reproducibility. The reflectance spectra of all samples after high temperature measurements in air (up to 500 °C) do not show any significant changes.
CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:MDPI AG Grandjacques, Mathilde; Kuntz, Pierre; Azais, Philippe; Genies, Sylvie; Raccurt, Olivier;The thermal runaway model used is a semi-empirical model based on a kinetic equation, parametrised by three parameters (m,n,p). It is believed that this kinetic equation can describe any reaction. The choice of parameters is often made without justifications. We assumed it necessary to develop a method to select the parameters. The method proposed is based on data coming from an accelerating rate calorimeter (ARC) test. The method has been applied on data obtained for cells aged on different conditions. Thanks to a post-mortem analysis and simulations carried out using the parameters obtained, we have shown that the ageing mechanisms have a major impact on the parameters.
Batteries arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Publisher:Author(s) Funded by:EC | INSHIPEC| INSHIPAuthors: Olivier Raccurt; Angela Disdier;doi: 10.1063/1.5067239
The Concentrated Solar Thermal Energy (STE) system requires components with a lifetime of more than 25 years to be profitable. Optical materials performances, such as mirrors and absorber coatings, are essential to the efficiency of the system. Any degradation of their optical properties leads to a reduced efficiency. In the frame of STAGE-STE project we are studying the durability of solar absorber coatings on metallic substrate for non-vacuum applications (in air). The definition of the test conditions was based on a critical review of the stress factors affecting the material such as temperature, humidity and saline atmosphere. The optical performances were measured over time for each sample to follow the variation of solar absorbance and emittance. For each test, a comparison of the performance criterion (PC=Δα-0.5e < 0.05) variation gives a relative resistance of each absorber to the corresponding stress factor. In this paper we will present the results of the accelerated tests campaign on the three solar absorbers samples. Materials characterization was used to analyse the degradation process occurring on each sample. A lifetime prediction based on the calculation of the activation energy has been presented for the thermal test. Finally, the relevance of each test has been discussed.
https://aip.scitatio... arrow_drop_down http://dx.doi.org/10.1063/1.50...Conference object . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5067239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://aip.scitatio... arrow_drop_down http://dx.doi.org/10.1063/1.50...Conference object . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5067239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Funded by:ANR | DURASOL, EC | INSHIPANR| DURASOL ,EC| INSHIPSandrine Therias; Olivier Raccurt; Coralie Avenel; Coralie Avenel; Jean-Luc Gardette;Abstract Solar mirrors for concentrated solar power (CSP) plants are expected to last at least 30 years. As this delay is far too long to obtain useful information regarding in-service degradation, accelerated approaches to weathering testing are performed by manufacturers and research laboratories in order to quickly assess the lifetime of commercial or new technologies. However, most published studies that have been performed in the CSP field are based on phenomenological approaches. The characterization of the degradation, which mostly considers reflectance loss, has rarely been linked to physical or chemical processes that are responsible for the degradation of properties. Furthermore, the general laws that can be established from these data to establish material behaviour are empirical. Ageing tests have been used for many years in other fields, particularly in the domain of polymeric materials. The impacts on the material properties of stress factors such as temperature, irradiation and humidity have been extensively studied, and models have been proposed for different kinds of materials, even though most are based on empirical observations. One of the goals of this article is to determine how these models could be applied to the weathering of solar mirrors, and as such, the goal of this paper is to provide a critical review of the various models that are most used and accepted by the scientific community. All of these models include material-dependent parameters, and the values that have been determined in these studies are reported here to list their order of magnitude.
Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Anna Heimsath; Olivier Raccurt; Christoph Happich; Fabienne Sallaberry; A. García de Jalón; Stephanie Meyen; Werner Platzer; Christine Delord; Angela Disdier; Aránzazu Fernández-García; Marco Montecchi;AbstractMirrors are the first link in the energy-conversion chain from Sun to electricity-delivery in the grid. Shape and solar reflectance are the key-parameters of mirrors, respectively affecting how solar radiation is concentrated around the focus, and how much of the impinging solar power is reflected. In SolarPACES Task III, an expert group is drafting the solar reflectance guidelines; in order to speed up the discussion the SRRR round robin was launched at the beginning of 2013. Identical kits, each one consisting of ten specimens collected from eight cooperating producers, were distributed and measured at six research institutes, acting as evaluators. The kit includes both traditional (glass based) and innovative (first-surface) solar mirrors. The paper only reports on the simplest task among those of SRRR: the solar hemispherical reflectance measurement. Near-specular solar reflectance was also measured and compared but the results are still under investigation and are not part of this paper. The measurements were accomplished according to the guidelines. The differences among the achieved results are within the typical accuracy of spectrophotometers, demonstrating the reliability of the reflectance guidelines. The statistic of the deviations from the true value is analysed separately for each evaluator, and allows us to infer information abut the gauging-status of the adopted reference mirror, as well as the measurement reproducibility.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Olivier Raccurt; Zineb Edfouf; M. Guerguer;AbstractCSP technology has a huge potential. However, all the components used in the energy generation process are not yet optimized. Reflectors are one of the most important devices to improve, asthe efficiencyof the power plant is directly linked to their high performance. Because reflectors are costly and cannot be changed frequently, their reflectivity should be maintained as long as possible.For this reason it is important to study their durability under real operation weather conditions.Natural ageing allows the determination of real lifetime mirrors characteristics and better understanding of their degradation mechanisms. For this investigation, polymeric and glass mirrors were exposed in two Moroccan sites with characteristic weather conditions, one close to the ocean and one in the desert, for more than one year of natural ageing. Different characterization techniques such as optical microscopy and UV-Visible-NIR spectophotometry were used to detect and analyze degradation mechanisms. The obtained results are shown in this paper and acomparison of mirrors behavior is proposed depending on the outdoor exposure sites. It can benoted that the desertic conditions are less aggressive than coastal conditions regarding tophysico-chemical degradation of both investigated mirror materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV M. Olcese; P. Garcia; R. Couturier; O. Raccurt; B. Thonon; J.F. Robin; S. Rougé; B. Senechal; J.F. Fourmigue;AbstractThe availability of cost-effective heat storage solutions is one of the key elements for the successful implementation of Direct Steam generation (DSG) solar plants. The most promising storage system for DSG solar plants consists of a 3-stage system whose key element is a Phase Change Material (PCM) latent heat module.In the framework of two large Concentrated Solar Power (CSP) projects, CEA-INES is involved in the development of heat storage systems for large scale DSG solar plants. Within these projects CEA-INES is setting up a unique testing platform consisting of all the required tools for the full qualification of the critical PCM storage modules.The PCM storage testing platform includes low temperature testing rigs to test the storage phenomenology and validate the performance simulation models for the selected PCM heat exchanger elements, testing equipment for the durability assessment of the key components up to a high pressure water steam testing rig able to test at lab-scale the PCM modules in real operating conditions. Most of these tools are currently in operation and the few remaining are about to be commissioned.The paper illustrates the CEA-INES design methodology for the development of the PCM storage modules and describes the most relevant tools of the CEA-INES test platform discussing how these tools are integral part of the PCM storage module design process. A few case studies and the results of the validation activity for some reference geometries are also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: R. Couturier; C. Bouquet; Olivier Raccurt; C. Delord;AbstractBy means of large mirrors, CSP (Concentrated Solar Power) technologies concentrate the solar energy on an absorber where it is collected as thermal energy. The decrease of the kWh cost and the insurance of a 25 years lifetime minimum are the key points to make these technologies cost competitive and ensure their large deployment. The solar field is the first expense item (20 to 30% of the investment) and is composed by the reflectors which concentrate the solar flux on the absorber. The durability of the mirrors is therefore of principal interest and has to be studied since the conception of the power plant. Actually, the majority of this technology uses glass mirrors made with silver and copper layers for a high reflectance. The protection of the silver layer from oxidation is ensured both by the copper layer and backside paint. In service conditions, the mirrors are submitted to arid climate where temperature, humidity and solar irradiation are extreme. Accelerated climatic tests in controlled environment are used to create the same degradations than the ones happening on site. Specular reflectance being the primary function of the mirrors, this is the parameter usually characterized to evaluate the aging of a mirror. Depending on the aging test and specifically for outdoor exposure, it might take a long time before a loss of reflectance occurs. We present here a new methodology based on the monitoring of the protective back layer degradation that can be used to anticipate the reflectance loss. Based on the activated energy calculated via an Arrhenius law, the lifetime prediction in normal condition can be established.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Olivier Raccurt; Angela Disdier; Christine Delord; R. Girard;AbstractThe degradation of solar glass mirrors is analyzed as a function of various constraints such as temperature, humidity, rain and solar irradiation. In order to understand the degradation mechanisms, two kinds of tests have been performed: simple tests to identify the effect of each constraint and complex tests to highlight the effects of synergy and to reproduce the natural ageing. The study of the paints coat degradation evidences that UV exposure is one of the most aggressive constraints for paint binder. But results show also a strong effect of liquid water on paint degradation and particularly on pigments loss and blistering phenomenon. Whereas temperature in dry environment is not a very degrading factor for coats, presence of liquid water is a strong accelerating constraint at high temperature. Agreement between outdoor ageing and indoor ageing with a new procedure involving UV, temperature and rain also shows that liquid water is the critical constraint responsible to edge corrosion of silver layer and paint delamination. This work shows also that relation between paint degradation and corrosion of silver layer is not obvious. Homogeneous corrosion by pitting was observed without any deep chemical deterioration of the paint coat system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:ANR | DURASOLANR| DURASOLSandrine Therias; Jean-Luc Gardette; Olivier Raccurt; Coralie Avenel; Coralie Avenel;AbstractThe durability of solar mirrors is a critical factor for the deployment of concentrating solar power plants. Accelerated aging test models currently applied in the polymer, electronic, and photovoltaic fields have recently been reviewed, and the issues of their application to solar mirrors have been discussed. This article first reports the results of temperature, humidity, and light irradiance accelerated aging tests performed to assess the dependent parameters of selected models from the literature. These parameters include the apparent activation energy for the Arrhenius temperature law, the Peck and Eyring coefficients for humidity models and the Schwarzschild coefficient for the irradiance law. The experimental values were then assessed for specular reflectance loss of solar mirrors. Finally, using these parameters, acceleration factors were calculated for solar mirrors. An effective temperature considering the Arrhenius degradation law was used rather than the commonly used mean temperature. This question is also addressed for light irradiance by using the dose instead of the mean value.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.uca.fr/hal-03020373/documentData sources: Hyper Article en LigneUniversité Grenoble Alpes: HALArticle . 2019Full-Text: https://uca.hal.science/hal-03020373Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2019Full-Text: https://uca.hal.science/hal-03020373Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41529-019-0089-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.uca.fr/hal-03020373/documentData sources: Hyper Article en LigneUniversité Grenoble Alpes: HALArticle . 2019Full-Text: https://uca.hal.science/hal-03020373Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2019Full-Text: https://uca.hal.science/hal-03020373Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41529-019-0089-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | INSHIP, EC | STAGE-STEEC| INSHIP ,EC| STAGE-STEE. Le Baron; O. Raccurt; P. Giraud; M. Adier; J. Barriga; B. Diaz; P. Echegut; D. De Sousa Meneses; C. Capiani; D. Sciti; A. Soum-Glaude; C. Escape; I. Jerman; G.A. López; T. Echániz; M.J. Tello; F. Matino; A. Maccari; L. Mercatelli; E. Sani;CSP (Concentrated Solar Power) plants technologies use the concentration of solar energy on a receiver to produce heat and then electricity by a thermodynamical process. A solar absorber material is used to convert the energy carried by light into heat. This type of material works at high temperatures (up to 1000 °C) under a highly concentrated solar flux (up to x1000 or more). Optical properties determine the performance of absorbers and it is thus necessary to measure their spectral absorptance and emittance. Solar absorptance is directly linked to the capacity of the absorber material to convert the solar flux into heat. Emittance drives the radiative thermal losses for the heated absorber and depends on the absorber temperature. The characterization of a material in operational conditions at high temperatures requires advanced apparatuses, and different measurement methods exist for the characterization of these two quantities of relevance regarding an absorber. A Round Robin Test (RRT) was conducted with the objective of comparing different new optical apparatuses and methods for measuring the emittance or luminance of various solar absorbers in air. Measurements were carried out directly at temperatures up to 560 °C while heating the samples, and also indirectly by hemispherical reflectance measurements at room temperature. In this paper, the Round Robin Test procedure to compare apparatuses is described, as well as the corresponding reflectance and emittance results on four types of materials. In addition, a discussion of some factors of influence over high temperature measurements in air and of the observed discrepancies among results from the evaluators is presented. The reliability of reflectance/emittance measurements is also demonstrated and statistics of deviations from the mean value are analysed. These allow us to infer information about measurement reproducibility. The reflectance spectra of all samples after high temperature measurements in air (up to 500 °C) do not show any significant changes.
CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.11.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:MDPI AG Grandjacques, Mathilde; Kuntz, Pierre; Azais, Philippe; Genies, Sylvie; Raccurt, Olivier;The thermal runaway model used is a semi-empirical model based on a kinetic equation, parametrised by three parameters (m,n,p). It is believed that this kinetic equation can describe any reaction. The choice of parameters is often made without justifications. We assumed it necessary to develop a method to select the parameters. The method proposed is based on data coming from an accelerating rate calorimeter (ARC) test. The method has been applied on data obtained for cells aged on different conditions. Thanks to a post-mortem analysis and simulations carried out using the parameters obtained, we have shown that the ageing mechanisms have a major impact on the parameters.
Batteries arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries7040068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Publisher:Author(s) Funded by:EC | INSHIPEC| INSHIPAuthors: Olivier Raccurt; Angela Disdier;doi: 10.1063/1.5067239
The Concentrated Solar Thermal Energy (STE) system requires components with a lifetime of more than 25 years to be profitable. Optical materials performances, such as mirrors and absorber coatings, are essential to the efficiency of the system. Any degradation of their optical properties leads to a reduced efficiency. In the frame of STAGE-STE project we are studying the durability of solar absorber coatings on metallic substrate for non-vacuum applications (in air). The definition of the test conditions was based on a critical review of the stress factors affecting the material such as temperature, humidity and saline atmosphere. The optical performances were measured over time for each sample to follow the variation of solar absorbance and emittance. For each test, a comparison of the performance criterion (PC=Δα-0.5e < 0.05) variation gives a relative resistance of each absorber to the corresponding stress factor. In this paper we will present the results of the accelerated tests campaign on the three solar absorbers samples. Materials characterization was used to analyse the degradation process occurring on each sample. A lifetime prediction based on the calculation of the activation energy has been presented for the thermal test. Finally, the relevance of each test has been discussed.
https://aip.scitatio... arrow_drop_down http://dx.doi.org/10.1063/1.50...Conference object . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5067239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://aip.scitatio... arrow_drop_down http://dx.doi.org/10.1063/1.50...Conference object . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5067239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Funded by:ANR | DURASOL, EC | INSHIPANR| DURASOL ,EC| INSHIPSandrine Therias; Olivier Raccurt; Coralie Avenel; Coralie Avenel; Jean-Luc Gardette;Abstract Solar mirrors for concentrated solar power (CSP) plants are expected to last at least 30 years. As this delay is far too long to obtain useful information regarding in-service degradation, accelerated approaches to weathering testing are performed by manufacturers and research laboratories in order to quickly assess the lifetime of commercial or new technologies. However, most published studies that have been performed in the CSP field are based on phenomenological approaches. The characterization of the degradation, which mostly considers reflectance loss, has rarely been linked to physical or chemical processes that are responsible for the degradation of properties. Furthermore, the general laws that can be established from these data to establish material behaviour are empirical. Ageing tests have been used for many years in other fields, particularly in the domain of polymeric materials. The impacts on the material properties of stress factors such as temperature, irradiation and humidity have been extensively studied, and models have been proposed for different kinds of materials, even though most are based on empirical observations. One of the goals of this article is to determine how these models could be applied to the weathering of solar mirrors, and as such, the goal of this paper is to provide a critical review of the various models that are most used and accepted by the scientific community. All of these models include material-dependent parameters, and the values that have been determined in these studies are reported here to list their order of magnitude.
Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2018.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Anna Heimsath; Olivier Raccurt; Christoph Happich; Fabienne Sallaberry; A. García de Jalón; Stephanie Meyen; Werner Platzer; Christine Delord; Angela Disdier; Aránzazu Fernández-García; Marco Montecchi;AbstractMirrors are the first link in the energy-conversion chain from Sun to electricity-delivery in the grid. Shape and solar reflectance are the key-parameters of mirrors, respectively affecting how solar radiation is concentrated around the focus, and how much of the impinging solar power is reflected. In SolarPACES Task III, an expert group is drafting the solar reflectance guidelines; in order to speed up the discussion the SRRR round robin was launched at the beginning of 2013. Identical kits, each one consisting of ten specimens collected from eight cooperating producers, were distributed and measured at six research institutes, acting as evaluators. The kit includes both traditional (glass based) and innovative (first-surface) solar mirrors. The paper only reports on the simplest task among those of SRRR: the solar hemispherical reflectance measurement. Near-specular solar reflectance was also measured and compared but the results are still under investigation and are not part of this paper. The measurements were accomplished according to the guidelines. The differences among the achieved results are within the typical accuracy of spectrophotometers, demonstrating the reliability of the reflectance guidelines. The statistic of the deviations from the true value is analysed separately for each evaluator, and allows us to infer information abut the gauging-status of the adopted reference mirror, as well as the measurement reproducibility.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Olivier Raccurt; Zineb Edfouf; M. Guerguer;AbstractCSP technology has a huge potential. However, all the components used in the energy generation process are not yet optimized. Reflectors are one of the most important devices to improve, asthe efficiencyof the power plant is directly linked to their high performance. Because reflectors are costly and cannot be changed frequently, their reflectivity should be maintained as long as possible.For this reason it is important to study their durability under real operation weather conditions.Natural ageing allows the determination of real lifetime mirrors characteristics and better understanding of their degradation mechanisms. For this investigation, polymeric and glass mirrors were exposed in two Moroccan sites with characteristic weather conditions, one close to the ocean and one in the desert, for more than one year of natural ageing. Different characterization techniques such as optical microscopy and UV-Visible-NIR spectophotometry were used to detect and analyze degradation mechanisms. The obtained results are shown in this paper and acomparison of mirrors behavior is proposed depending on the outdoor exposure sites. It can benoted that the desertic conditions are less aggressive than coastal conditions regarding tophysico-chemical degradation of both investigated mirror materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV M. Olcese; P. Garcia; R. Couturier; O. Raccurt; B. Thonon; J.F. Robin; S. Rougé; B. Senechal; J.F. Fourmigue;AbstractThe availability of cost-effective heat storage solutions is one of the key elements for the successful implementation of Direct Steam generation (DSG) solar plants. The most promising storage system for DSG solar plants consists of a 3-stage system whose key element is a Phase Change Material (PCM) latent heat module.In the framework of two large Concentrated Solar Power (CSP) projects, CEA-INES is involved in the development of heat storage systems for large scale DSG solar plants. Within these projects CEA-INES is setting up a unique testing platform consisting of all the required tools for the full qualification of the critical PCM storage modules.The PCM storage testing platform includes low temperature testing rigs to test the storage phenomenology and validate the performance simulation models for the selected PCM heat exchanger elements, testing equipment for the durability assessment of the key components up to a high pressure water steam testing rig able to test at lab-scale the PCM modules in real operating conditions. Most of these tools are currently in operation and the few remaining are about to be commissioned.The paper illustrates the CEA-INES design methodology for the development of the PCM storage modules and describes the most relevant tools of the CEA-INES test platform discussing how these tools are integral part of the PCM storage module design process. A few case studies and the results of the validation activity for some reference geometries are also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu