Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 6. Clean water

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Raymond L. Huhnke;
    Raymond L. Huhnke
    ORCID
    Harvested from ORCID Public Data File

    Raymond L. Huhnke in OpenAIRE
    orcid Hailin Zhang;
    Hailin Zhang
    ORCID
    Harvested from ORCID Public Data File

    Hailin Zhang in OpenAIRE
    orcid Xiao Sun;
    Xiao Sun
    ORCID
    Harvested from ORCID Public Data File

    Xiao Sun in OpenAIRE
    Hasan K. Atiyeh; +1 Authors

    Abstract Microorganisms used in syngas fermentation require nutrients to grow and convert syngas (CO, H2 and CO2) into various products. Many of the essential nutrients can be provided by biochar. Poultry litter biochar (PLBC) contains minerals and trace metals and has a high pH buffering capacity, making it suitable as a nutrient supplement. The effects of PLBC loadings from 1 to 20 g L−1 on syngas fermentation were determined in 250 ml bottle assays. Results showed that 10 and 20 g L−1 PLBC significantly increased ethanol production compared to standard yeast extract (YE) medium. Fermentations in a 3L continuous stirred tank reactor (CSTR) with 10 g L−1 PLBC with and without 4-morpholineethanesulfonic acid (MES) showed 64% and 36% more ethanol production, respectively, than standard medium. The acetic acid accumulated at the beginning of fermentation was completely converted to ethanol in all media tested in the CSTR. These results demonstrate the feasibility of using PLBC medium without costly MES in the CSTR to enhance ethanol production from syngas for potential use at commercial scale.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    39
    citations39
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Xiao Sun;
    Xiao Sun
    ORCID
    Harvested from ORCID Public Data File

    Xiao Sun in OpenAIRE
    Christopher Chukwudi Okonkwo; orcid Raymond L. Huhnke;
    Raymond L. Huhnke
    ORCID
    Harvested from ORCID Public Data File

    Raymond L. Huhnke in OpenAIRE
    orcid Thaddeus Chukwuemeka Ezeji;
    Thaddeus Chukwuemeka Ezeji
    ORCID
    Harvested from ORCID Public Data File

    Thaddeus Chukwuemeka Ezeji in OpenAIRE
    +3 Authors

    Biochar can be an inexpensive pH buffer and source of mineral and trace metal nutrients in acetone-butanol-ethanol (ABE) fermentation. This study evaluated the feasibility of replacing expensive 4-morpholineethanesulfonic acid (MES) P2 buffer and mineral nutrients with biochar made from switchgrass (SGBC), forage sorghum (FSBC), redcedar (RCBC) and poultry litter (PLBC) for ABE fermentation. Fermentations using Clostridium beijerinckii ATCC 51743 in glucose and non-detoxified switchgrass hydrolysate media were performed at 35 °C in 250 mL bottles for 72 h. Medium containing buffer and minerals without biochar was the control. Similar ABE production (about 18.0 g/L) in glucose media with SGBC, FSBC and RCBC and control was measured. However in non-detoxified switchgrass hydrolysate medium, SGBC, RCBC and PLBC produced more ABE (about 18.5 g/L) than the control (10.1 g/L). This demonstrates that biochar is an effective buffer and mineral supplement for ABE production from lignocellulosic biomass without costly detoxification process.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioresource Technolo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    47
    citations47
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioresource Technolo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Hailin Zhang;
    Hailin Zhang
    ORCID
    Harvested from ORCID Public Data File

    Hailin Zhang in OpenAIRE
    Hasan K. Atiyeh; orcid Ajay Kumar;
    Ajay Kumar
    ORCID
    Harvested from ORCID Public Data File

    Ajay Kumar in OpenAIRE
    orcid Xiao Sun;
    Xiao Sun
    ORCID
    Harvested from ORCID Public Data File

    Xiao Sun in OpenAIRE

    Biochar contains minerals and metals that can serve as nutrients for acetogens to produce ethanol via syngas fermentation. In this study, four fermentation media containing biochar from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC) were compared with standard yeast extract (YE) medium for syngas fermentation using Clostridium ragsdalei. Fermentations were performed in 250mL bottle reactors at 150rpm and 37°C with syngas containing CO:H2:CO2 (40:30:30) by volume. Results showed that media containing RCBC and PLBC improved ethanol production by 16.3% and 58.9%, respectively, compared to YE medium. C. ragsdalei consumed 69% more H2 and 40% more CO in PLBC medium compared to YE medium. However, no enhancement of ethanol production was observed in SGBC and FSBC media. The highest release of Na, K, Ca, Mg, S and P was from PLBC, which was considered to contribute in enhancement of ethanol production.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    65
    citations65
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hasan K. Atiyeh; Mengxing Li; Yan Chen; orcid Xiao Sun;
    Xiao Sun
    ORCID
    Harvested from ORCID Public Data File

    Xiao Sun in OpenAIRE

    Biochar is traditionally used to improve soil properties in arable land and as adsorbent or precursor of activated carbon in wastewater treatment. Recent advances have shown biochar potentials in enhancing productions of biofuels and chemicals such as bio-ethanol, butanol, methane, hydrogen, bio-diesel, hydrocarbons and carboxylic acids. The properties of biochar such as high levels of porosity, functional groups, cation exchange capacity, pH buffering capacity, electron conductivity, and macro-/micro- nutrients (Na, K, Ca, Mg, P, S, Fe, etc.) provide appropriate conditions to relieve physicochemical stresses on microorganisms through pH buffering, detoxification, nutrients supply, serving as electron carrier and supportive microbial habitats. This paper critically reviewed biochar production and characteristics, biochar utilization in anaerobic digestion, composting, microbial fermentation, hydrolysate detoxification, catalysis in biomass refinery and biodiesel synthesis. This review provides novel vision of biochar application, which could guide future research towards cleaner and more economic production of renewable fuels and bio-based chemicals.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioresource Technolo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    116
    citations116
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioresource Technolo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ralph S. Tanner; orcid Ajay Kumar;
    Ajay Kumar
    ORCID
    Harvested from ORCID Public Data File

    Ajay Kumar in OpenAIRE
    orcid Xiao Sun;
    Xiao Sun
    ORCID
    Harvested from ORCID Public Data File

    Xiao Sun in OpenAIRE
    orcid Hailin Zhang;
    Hailin Zhang
    ORCID
    Harvested from ORCID Public Data File

    Hailin Zhang in OpenAIRE
    +1 Authors

    Biochar has functional groups, pH buffering capacity and cation exchange capacity (CEC) that can be beneficial in syngas fermentation. This study examined the properties of biochar made from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC), and their effects on ethanol and butanol production from syngas using Clostridium carboxidivorans. Experiments were performed in 250 mL bottle reactors with a 50 mL working volume at 37 °C fed syngas containing CO:H2:CO2 (40:30:30 by volume). Results showed that PLBC and SGBC enhanced ethanol production by 90% and 73%, respectively, and butanol production by fourfold compared to standard yeast extract medium without biochar (control). CO and H2 utilization in PLBC and SGBC media increased compared to control. PLBC had the highest pH buffering capacity, CEC and total amount of cations compared with SGBC, FSBC and RCBC, which could have contributed to its highest enhancement of ethanol and butanol production.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    52
    citations52
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph