- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Barozzi, Marco; Copelli, Sabrina; Russo, Eleonora; Sgarbossa, Paolo; Lavagnolo, Maria Cristina; Sandon, Annalisa; Morosini, Cristiana; Sieni, Elisabetta;doi: 10.3390/su141811785
handle: 11577/3470689
In the framework of sustainability, water shortages and water pollution are two important aspects to be considered. Proposing efficient and low-impact technologies is of paramount importance to promote circular economies associated with the use of water in the industrial context, especially in the textile industry. In this work, the application of a set of magnetic nanostructured adsorbents (MNAs) to cleanse metal ions from textile wastewaters was studied and analyzed. MNAs were generated with a low-cost process, involving iron (II/III) salts (e.g., chlorides), sodium or ammonium hydroxide solutions, and graphene oxide, obtained from graphite by a modified Hummers’ method at room temperature. The shape and the size were studied with transmission electron microscopy. Adsorbents were tested with different metal ions (e.g., copper, chromium (III), and nickel). Metal ion concentrations were analyzed by means of inductively coupled plasma optical emission spectroscopy (ICP-OES), and adsorption isotherms were characterized. From the results, the MNAs exhibited the capability of removing metal ions up to a yield of 99% for Cr3+, 94.7% for Cu2+, and 91.4% for Ni2+, along with adsorption loads up to 4.56 mg/g of MNAs.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: GARBO, FRANCESCO; LAVAGNOLO, MARIA CRISTINA; MALAGOLI, MARIO; SCHIAVON, MICHELA; +1 AuthorsGARBO, FRANCESCO; LAVAGNOLO, MARIA CRISTINA; MALAGOLI, MARIO; SCHIAVON, MICHELA; COSSU, RAFFAELLO;The use of energy crops in the treatment of wastewaters is of increasing interest, particularly in view of the widespread scarcity of water in many countries and the possibility of obtaining renewable fuels of vegetable origin. The aim of this study was to evaluate the feasibility of landfill leachate phytotreatment using sunflowers, particularly as seeds from this crop are suitable for use in biodiesel production. Two different irrigation systems were tested: vertical flow and horizontal subsurface flow, with or without effluent recirculation. Plants were grown in 130L rectangular tanks placed in a special climatic chamber. Leachate irrigated units were submitted to increasing nitrogen concentrations up to 372mgN/L. Leachate was successfully tested as an alternative fertilizer for plants and was not found to inhibit biomass development. The experiment revealed good removal efficiencies for COD (η>50%) up until flowering, while phosphorous removal invariably exceeded 60%. Nitrogen removal rates decreased over time in all experimental units, particularly in vertical flow tanks. In general, horizontal flow units showed the best performances in terms of contaminant removal capacity; the effluent recirculation procedure did not improve performance. Significant evapo-transpiration was observed, particularly in vertical flow units, promoting removal of up to 80% of the inlet irrigation volume.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2016.10.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2016.10.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Authors: GIROTTO, FRANCESCA; LAVAGNOLO, MARIA CRISTINA; PIVATO, ALBERTO;handle: 2434/864825 , 11577/3239950
Spent coffee grounds (SCGs) are potentially optimal substrates for methane production but the content of organic compounds refractory to anaerobic digestion reduces the yield of the process. Alkaline pre-treatment was applied to enhance the methane recovery from SCGs through anaerobic digestion. NaOH was applied with different loadings, namely 2, 4, 6, 8% w/w for 24 h, to assess the efficiency of the process and the optimal amount of the basifying solution applied. The highest concentration of NaOH (8% w/w) lead to the best anaerobic digestion performances (392 mLCH4/gVS) as a consequence of the slightly higher lignin degradation which was 24% higher than that of the untreated substrate, and of the higher dissolved organic carbon concentration.
Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-017-0033-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-017-0033-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:Elsevier BV Rachele Malesani; Alberto Pivato; Stefano Bocchi; Maria Cristina Lavagnolo; Simone Muraro; Andrea Schievano;handle: 11577/3410758
Aerobic biodegradation of biomass can release considerable heat, reaching temperatures of up to 65 °C. This heat can be recovered and used for domestic purposes through the implementation of Compost Heat Recovery System (CHRS). In this study, data were collected from a full-scale CHRS, fed with tree-pruning residues, installed in a farmhouse located in Northern Italy. The CHRS (2.75 kW average heating power) worked in conjunction with a pellet combustor for one year.Energy and carbon balances were analyzed and compared (over a 15-year life-time) with combinations of alternative heating systems (both traditional and green ones). The real case study provided a heat supply at a competitive cost (0.087 € kWh−1). A scenario with two CHRSs would further decrease costs (0.074 € kWh−1). In terms of the carbon balance, a CHRS can save up to 0.252 kgCO2-eq kWh−1 of energy produced, compared to a fossil-fuel alternative (natural-gas), while promoting carbon storage for around 0.05 kgCO2-eq kWh−1 in agricultural soils by compost amendment. Over a 15-year period, each module can potentially substitute fossil-derived heat for around 264 MgCO2-eq, while increasing soil carbon pool by around 20 MgCO2-eq, as C-stock calculated on a medium-term scenario (100-years).CHRSs have great potential to furnish renewable heat at competitive prices, while providing other ecosystem services, such as carbon storage and nutrients cycling to soil. Economic valorization of tree-pruning residues could also be an incentive for the implementation of agroforestry practices and landscape features. Further studies are needed in this relatively unexplored field, which might be of interest in the context of EU regulatory frameworks such as the EU Directive 2018/2001 and the upcoming Common Agricultural Policy (CAP) 2021 – 2027.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2021License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envc.2021.100131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2021License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envc.2021.100131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC GIROTTO, FRANCESCA; PIVATO, ALBERTO; COSSU, RAFFAELLO; NKENG, GEORGE ELAMBO; LAVAGNOLO, MARIA CRISTINA;handle: 2434/864813 , 11577/3235247
Coffee is the world’s second most traded commodity and the most renowned drink worldwide. The increasing production of coffee has been accompanied by a rise in consumption, and consequent increment in the amount of spent coffee grounds (SCGs) remaining as a solid residue from coffee brewing. In view of the high content of biodegradable compounds, if disposed, SCGs will certainly need to be biostabilized, although they should preferably be exploited in a biorefinery chain scheme. A wide range of alternative options is available for use in recycling SCGs as a valuable resource: food additives, pharmaceutical components, bio-sorbents, bio-fuels, and bio-products. The option of producing biogas from SCGs was tested and lab-scale bio-methane potential experiments were performed using different substrate to inoculum (S/I) ratios, namely 0.5, 1, and 2. A S/I ratio of 2 was found to be the optimal condition, resulting in a methane yield of 0.36 m3CH4/kgVS.
Journal of Material ... arrow_drop_down Journal of Material Cycles and Waste ManagementArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10163-017-0621-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Material ... arrow_drop_down Journal of Material Cycles and Waste ManagementArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10163-017-0621-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:EC | TEAPOTSEC| TEAPOTSAuthors: Al-Twal, Kareem Osama Fakhri; Beggio, Giovanni; Schiavon, Marco; lavagnolo, maria cristina; +1 AuthorsAl-Twal, Kareem Osama Fakhri; Beggio, Giovanni; Schiavon, Marco; lavagnolo, maria cristina; University of Padua;doi: 10.3390/app142311245
Compost Heat Recovery Systems (CHRS) sustainably capture heat from composting waste biomass, helping reduce greenhouse gas emissions and fossil fuel reliance. The choice of feedstock affects the performance of CHRSs as it controls the microbial activities and the amount of heat generated. This review evaluates plant-based, animal-derived, and non-agricultural feedstocks to optimize CHRS energy recovery. A systematic review of 244 studies, published from 1996 to 2023 and available on Scopus, Web of Science, and external databases, categorized feedstocks based on properties like carbon-nitrogen ratio (C/N), moisture content, bulk density, and heating value to assess their impact on energy recovery and compost quality. The review followed the PRISMA guidelines, excluding irrelevant documents and those that lacked quantitative data. Animal-based materials, which have high levels of moisture and nutrients, such as nitrogen (14.50–32.20 g/kg TS) and phosphorus (13.0–13.5 g/kg TS), promote rapid growth of microbes and consistent heat production supported by their stable carbon content (353.8–450.0 g/kg TS) and optimal C/N ratios (5.90–28.90). On the other hand, plant-based materials that are rich in volatile solids (327.2–960.0 g/kg TS) and lignin (36.7–290.0 g/kg TS) offer a steady and prolonged release of heat but decompose more slowly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app142311245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app142311245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, Ireland, United Kingdom, Ireland, Denmark, Italy, United KingdomPublisher:Elsevier BV Publicly fundedAndreina Rossi; Daniela Spiga; Paolo Dessì; Fabiano Asunis; Lidia Lombardi; Alberto Pivato; Raffaella Pomi; Piet N.L. Lens; Luca Alibardi; Aldo Muntoni; Aldo Muntoni; Alessandra Polettini; Giorgia De Gioannis; Giorgia De Gioannis; William P. Clarke; Maria Cristina Lavagnolo; Alessandro Spagni; Thomas Fruergaard Astrup;pmid: 32683243
handle: 11588/950608 , 20.500.14243/377682 , 10379/16459 , 11577/3345564 , 11573/1433538 , 11584/294796
pmid: 32683243
handle: 11588/950608 , 20.500.14243/377682 , 10379/16459 , 11577/3345564 , 11573/1433538 , 11584/294796
The concept of biorefinery expands the possibilities to extract value from organic matter in form of either bespoke crops or organic waste. The viability of biorefinery schemes depends on the recovery of higher-value chemicals with potential for a wide distribution and an untapped marketability. The feasibility of biorefining organic waste is enhanced by the fact that the biorefinery will typically receive a waste management fee for accepting organic waste. The development and implementation of waste biorefinery concepts can open up a wide array of possibilities to shift waste management towards higher sustainability. However, barriers encompassing environmental, technical, economic, logistic, social and legislative aspects need to be overcome. For instance, waste biorefineries are likely to be complex systems due to the variability, heterogeneity and low purity of waste materials as opposed to dedicated biomasses. This article discusses the drivers that can make the biorefinery concept applicable to waste management and the possibilities for its development to full scale. Technological, strategic and market constraints affect the successful implementations of these systems. Fluctuations in waste characteristics, the level of contamination in the organic waste fraction, the proximity of the organic waste resource, the markets for the biorefinery products, the potential for integration with other industrial processes and disposal of final residues are all critical aspects requiring detailed analysis. Furthermore, interventions from policy makers are necessary to foster sustainable bio-based solutions for waste management.
Archivio istituziona... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.wasman.2020.07.010Data sources: Bielefeld Academic Search Engine (BASE)National University of Ireland (NUI), Galway: ARANArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/16459Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Galway Research RepositoryArticle . 2020License: CC BY NC NDData sources: University of Galway Research RepositoryThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2020.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.wasman.2020.07.010Data sources: Bielefeld Academic Search Engine (BASE)National University of Ireland (NUI), Galway: ARANArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/16459Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Galway Research RepositoryArticle . 2020License: CC BY NC NDData sources: University of Galway Research RepositoryThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2020.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Authors: Yanqing Yi; Jingkuang Liu; Maria Cristina Lavagnolo; Alessandro Manzardo;handle: 11577/3542741
Construction and demolition waste reduction (C&DWR) is an important measure to protect the environment and promote sustainable development in the construction sector. The present policy in China remains a lack of emphasis on carbon tax and penalty for reducing construction waste. This paper proposes a construction and demolition waste (C&DW) management model to identify the waste reduction effects of various policies in China. It simulates the effects of single policies and combined policies on waste reduction and carbon emission by using the approach of integrating system dynamics and grey model theory. The results reveal that: (1) Penalties can effectively reduce the amount of illegal dump waste and carbon emissions from illegal dump waste, with an appropriate penalty value (in Chinese CNY) suggested as ∈160,320. (2) Subsidies can vastly increase the amount of waste recycled and a carbon tax can reduce carbon emissions; the recommended values are suggested as subsidies ∈30,45 and carbon tax ∈40,70. (3) Compared to other policies, the combined policy of penalty–waste disposal charging fee–subsidy–carbon tax (160, 60, 45, 70) achieves the greatest environmental benefits in terms of reducing waste and carbon emission. (4) Governments should improve waste minimization incentive policies and gradually introduce trials for a carbon tax policy, encourage the use of digital governance combined with blockchain technology to regulate C&DW. These findings provide valuable insights for policymakers to develop effective waste reduction strategies and promote sustainability through the implementation of C&DWR theories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Andrea Savio; Giovanni Ferrari; Francesco Marinello; Andrea Pezzuolo; Maria Cristina Lavagnolo; Mariangela Guidolin;doi: 10.3390/su142215030
Bioenergy is being increasingly used worldwide to generate energy from biogas, biomethane, and other biofuels, bringing significant environmental and economic benefits. In Italy, biogas can significantly contribute to the achievement of the renewable energy targets set at the national and European levels. The exploitation of this energy source in a particular area is determined by its environmental and anthropic properties, as well as by the incentive system and the political will of decision makers. This paper analyzes the socioeconomic drivers and natural conditions triggering bioelectricity production in Italian regions. The analysis proposed here was performed in two steps—first, by identifying groups of similar regions for some natural, social, and economic variables, and then by modeling the historical trajectory of bioelectricity production for each identified group with innovation diffusion models. As a general finding, regions pertaining to the same group in terms of natural and socioeconomic conditions revealed a similar production pattern for bioelectricity, as confirmed by the results of diffusion modeling. On the basis of the diffusion modeling procedure, some scenario simulations were performed, which suggested the set-up of suitable policy actions for each group of regions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, Italy, United KingdomPublisher:Elsevier BV Authors: Lavagnolo, Maria Cristina; Girotto, Francesca; Rafieenia, Razieh; Danieli, Luciano; +1 AuthorsLavagnolo, Maria Cristina; Girotto, Francesca; Rafieenia, Razieh; Danieli, Luciano; Alibardi, Luca;handle: 2434/864871 , 11577/3266604
Abstract Two-stage anaerobic digestion (AD) batch tests were performed using the organic fraction of municipal solid waste as substrate. Effects of different combination of initial pH (5.5, 7, and 9) and food to microorganism (F/M) ratio (from 0.5 to 6 gVS/gVS) were investigated for hydrogen and methane productions during the first and the second stage of AD, respectively. Results showed that both initial pH and F/M ratio had an impact on hydrogen yield, hydrogen production rate and duration of lag phase. The highest hydrogen yield of 29.8 mLH2/gVS was obtained at initial pH of 5.5 and F/M ratio of 6. However, the highest hydrogen production rate (65 mLH2/gVS/d) was recorded at pH of 9 and F/M ratio of 6. Increasing the initial pH from 5.5 to 9, led to shorter lag phases for all F/M ratios. Methane production from second phase was not significantly influenced by the F/M ratios tested in the first digestion phase. When compared to single-phase AD, two-stage AD tests resulted in enhanced methane production rates from 37.3 to 68.5 mLCH4/gVS/d, reducing by half both the lag phase and the time required to reach maximum methane production.
Archivio istituziona... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.renene.2018.03.039Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.renene.2018.03.039Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Barozzi, Marco; Copelli, Sabrina; Russo, Eleonora; Sgarbossa, Paolo; Lavagnolo, Maria Cristina; Sandon, Annalisa; Morosini, Cristiana; Sieni, Elisabetta;doi: 10.3390/su141811785
handle: 11577/3470689
In the framework of sustainability, water shortages and water pollution are two important aspects to be considered. Proposing efficient and low-impact technologies is of paramount importance to promote circular economies associated with the use of water in the industrial context, especially in the textile industry. In this work, the application of a set of magnetic nanostructured adsorbents (MNAs) to cleanse metal ions from textile wastewaters was studied and analyzed. MNAs were generated with a low-cost process, involving iron (II/III) salts (e.g., chlorides), sodium or ammonium hydroxide solutions, and graphene oxide, obtained from graphite by a modified Hummers’ method at room temperature. The shape and the size were studied with transmission electron microscopy. Adsorbents were tested with different metal ions (e.g., copper, chromium (III), and nickel). Metal ion concentrations were analyzed by means of inductively coupled plasma optical emission spectroscopy (ICP-OES), and adsorption isotherms were characterized. From the results, the MNAs exhibited the capability of removing metal ions up to a yield of 99% for Cr3+, 94.7% for Cu2+, and 91.4% for Ni2+, along with adsorption loads up to 4.56 mg/g of MNAs.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: GARBO, FRANCESCO; LAVAGNOLO, MARIA CRISTINA; MALAGOLI, MARIO; SCHIAVON, MICHELA; +1 AuthorsGARBO, FRANCESCO; LAVAGNOLO, MARIA CRISTINA; MALAGOLI, MARIO; SCHIAVON, MICHELA; COSSU, RAFFAELLO;The use of energy crops in the treatment of wastewaters is of increasing interest, particularly in view of the widespread scarcity of water in many countries and the possibility of obtaining renewable fuels of vegetable origin. The aim of this study was to evaluate the feasibility of landfill leachate phytotreatment using sunflowers, particularly as seeds from this crop are suitable for use in biodiesel production. Two different irrigation systems were tested: vertical flow and horizontal subsurface flow, with or without effluent recirculation. Plants were grown in 130L rectangular tanks placed in a special climatic chamber. Leachate irrigated units were submitted to increasing nitrogen concentrations up to 372mgN/L. Leachate was successfully tested as an alternative fertilizer for plants and was not found to inhibit biomass development. The experiment revealed good removal efficiencies for COD (η>50%) up until flowering, while phosphorous removal invariably exceeded 60%. Nitrogen removal rates decreased over time in all experimental units, particularly in vertical flow tanks. In general, horizontal flow units showed the best performances in terms of contaminant removal capacity; the effluent recirculation procedure did not improve performance. Significant evapo-transpiration was observed, particularly in vertical flow units, promoting removal of up to 80% of the inlet irrigation volume.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2016.10.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2016.10.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Authors: GIROTTO, FRANCESCA; LAVAGNOLO, MARIA CRISTINA; PIVATO, ALBERTO;handle: 2434/864825 , 11577/3239950
Spent coffee grounds (SCGs) are potentially optimal substrates for methane production but the content of organic compounds refractory to anaerobic digestion reduces the yield of the process. Alkaline pre-treatment was applied to enhance the methane recovery from SCGs through anaerobic digestion. NaOH was applied with different loadings, namely 2, 4, 6, 8% w/w for 24 h, to assess the efficiency of the process and the optimal amount of the basifying solution applied. The highest concentration of NaOH (8% w/w) lead to the best anaerobic digestion performances (392 mLCH4/gVS) as a consequence of the slightly higher lignin degradation which was 24% higher than that of the untreated substrate, and of the higher dissolved organic carbon concentration.
Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-017-0033-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-017-0033-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:Elsevier BV Rachele Malesani; Alberto Pivato; Stefano Bocchi; Maria Cristina Lavagnolo; Simone Muraro; Andrea Schievano;handle: 11577/3410758
Aerobic biodegradation of biomass can release considerable heat, reaching temperatures of up to 65 °C. This heat can be recovered and used for domestic purposes through the implementation of Compost Heat Recovery System (CHRS). In this study, data were collected from a full-scale CHRS, fed with tree-pruning residues, installed in a farmhouse located in Northern Italy. The CHRS (2.75 kW average heating power) worked in conjunction with a pellet combustor for one year.Energy and carbon balances were analyzed and compared (over a 15-year life-time) with combinations of alternative heating systems (both traditional and green ones). The real case study provided a heat supply at a competitive cost (0.087 € kWh−1). A scenario with two CHRSs would further decrease costs (0.074 € kWh−1). In terms of the carbon balance, a CHRS can save up to 0.252 kgCO2-eq kWh−1 of energy produced, compared to a fossil-fuel alternative (natural-gas), while promoting carbon storage for around 0.05 kgCO2-eq kWh−1 in agricultural soils by compost amendment. Over a 15-year period, each module can potentially substitute fossil-derived heat for around 264 MgCO2-eq, while increasing soil carbon pool by around 20 MgCO2-eq, as C-stock calculated on a medium-term scenario (100-years).CHRSs have great potential to furnish renewable heat at competitive prices, while providing other ecosystem services, such as carbon storage and nutrients cycling to soil. Economic valorization of tree-pruning residues could also be an incentive for the implementation of agroforestry practices and landscape features. Further studies are needed in this relatively unexplored field, which might be of interest in the context of EU regulatory frameworks such as the EU Directive 2018/2001 and the upcoming Common Agricultural Policy (CAP) 2021 – 2027.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2021License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envc.2021.100131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2021License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envc.2021.100131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC GIROTTO, FRANCESCA; PIVATO, ALBERTO; COSSU, RAFFAELLO; NKENG, GEORGE ELAMBO; LAVAGNOLO, MARIA CRISTINA;handle: 2434/864813 , 11577/3235247
Coffee is the world’s second most traded commodity and the most renowned drink worldwide. The increasing production of coffee has been accompanied by a rise in consumption, and consequent increment in the amount of spent coffee grounds (SCGs) remaining as a solid residue from coffee brewing. In view of the high content of biodegradable compounds, if disposed, SCGs will certainly need to be biostabilized, although they should preferably be exploited in a biorefinery chain scheme. A wide range of alternative options is available for use in recycling SCGs as a valuable resource: food additives, pharmaceutical components, bio-sorbents, bio-fuels, and bio-products. The option of producing biogas from SCGs was tested and lab-scale bio-methane potential experiments were performed using different substrate to inoculum (S/I) ratios, namely 0.5, 1, and 2. A S/I ratio of 2 was found to be the optimal condition, resulting in a methane yield of 0.36 m3CH4/kgVS.
Journal of Material ... arrow_drop_down Journal of Material Cycles and Waste ManagementArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10163-017-0621-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Material ... arrow_drop_down Journal of Material Cycles and Waste ManagementArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10163-017-0621-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:EC | TEAPOTSEC| TEAPOTSAuthors: Al-Twal, Kareem Osama Fakhri; Beggio, Giovanni; Schiavon, Marco; lavagnolo, maria cristina; +1 AuthorsAl-Twal, Kareem Osama Fakhri; Beggio, Giovanni; Schiavon, Marco; lavagnolo, maria cristina; University of Padua;doi: 10.3390/app142311245
Compost Heat Recovery Systems (CHRS) sustainably capture heat from composting waste biomass, helping reduce greenhouse gas emissions and fossil fuel reliance. The choice of feedstock affects the performance of CHRSs as it controls the microbial activities and the amount of heat generated. This review evaluates plant-based, animal-derived, and non-agricultural feedstocks to optimize CHRS energy recovery. A systematic review of 244 studies, published from 1996 to 2023 and available on Scopus, Web of Science, and external databases, categorized feedstocks based on properties like carbon-nitrogen ratio (C/N), moisture content, bulk density, and heating value to assess their impact on energy recovery and compost quality. The review followed the PRISMA guidelines, excluding irrelevant documents and those that lacked quantitative data. Animal-based materials, which have high levels of moisture and nutrients, such as nitrogen (14.50–32.20 g/kg TS) and phosphorus (13.0–13.5 g/kg TS), promote rapid growth of microbes and consistent heat production supported by their stable carbon content (353.8–450.0 g/kg TS) and optimal C/N ratios (5.90–28.90). On the other hand, plant-based materials that are rich in volatile solids (327.2–960.0 g/kg TS) and lignin (36.7–290.0 g/kg TS) offer a steady and prolonged release of heat but decompose more slowly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app142311245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app142311245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, Ireland, United Kingdom, Ireland, Denmark, Italy, United KingdomPublisher:Elsevier BV Publicly fundedAndreina Rossi; Daniela Spiga; Paolo Dessì; Fabiano Asunis; Lidia Lombardi; Alberto Pivato; Raffaella Pomi; Piet N.L. Lens; Luca Alibardi; Aldo Muntoni; Aldo Muntoni; Alessandra Polettini; Giorgia De Gioannis; Giorgia De Gioannis; William P. Clarke; Maria Cristina Lavagnolo; Alessandro Spagni; Thomas Fruergaard Astrup;pmid: 32683243
handle: 11588/950608 , 20.500.14243/377682 , 10379/16459 , 11577/3345564 , 11573/1433538 , 11584/294796
pmid: 32683243
handle: 11588/950608 , 20.500.14243/377682 , 10379/16459 , 11577/3345564 , 11573/1433538 , 11584/294796
The concept of biorefinery expands the possibilities to extract value from organic matter in form of either bespoke crops or organic waste. The viability of biorefinery schemes depends on the recovery of higher-value chemicals with potential for a wide distribution and an untapped marketability. The feasibility of biorefining organic waste is enhanced by the fact that the biorefinery will typically receive a waste management fee for accepting organic waste. The development and implementation of waste biorefinery concepts can open up a wide array of possibilities to shift waste management towards higher sustainability. However, barriers encompassing environmental, technical, economic, logistic, social and legislative aspects need to be overcome. For instance, waste biorefineries are likely to be complex systems due to the variability, heterogeneity and low purity of waste materials as opposed to dedicated biomasses. This article discusses the drivers that can make the biorefinery concept applicable to waste management and the possibilities for its development to full scale. Technological, strategic and market constraints affect the successful implementations of these systems. Fluctuations in waste characteristics, the level of contamination in the organic waste fraction, the proximity of the organic waste resource, the markets for the biorefinery products, the potential for integration with other industrial processes and disposal of final residues are all critical aspects requiring detailed analysis. Furthermore, interventions from policy makers are necessary to foster sustainable bio-based solutions for waste management.
Archivio istituziona... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.wasman.2020.07.010Data sources: Bielefeld Academic Search Engine (BASE)National University of Ireland (NUI), Galway: ARANArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/16459Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Galway Research RepositoryArticle . 2020License: CC BY NC NDData sources: University of Galway Research RepositoryThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2020.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2020License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.wasman.2020.07.010Data sources: Bielefeld Academic Search Engine (BASE)National University of Ireland (NUI), Galway: ARANArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/16459Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Galway Research RepositoryArticle . 2020License: CC BY NC NDData sources: University of Galway Research RepositoryThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2020.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Authors: Yanqing Yi; Jingkuang Liu; Maria Cristina Lavagnolo; Alessandro Manzardo;handle: 11577/3542741
Construction and demolition waste reduction (C&DWR) is an important measure to protect the environment and promote sustainable development in the construction sector. The present policy in China remains a lack of emphasis on carbon tax and penalty for reducing construction waste. This paper proposes a construction and demolition waste (C&DW) management model to identify the waste reduction effects of various policies in China. It simulates the effects of single policies and combined policies on waste reduction and carbon emission by using the approach of integrating system dynamics and grey model theory. The results reveal that: (1) Penalties can effectively reduce the amount of illegal dump waste and carbon emissions from illegal dump waste, with an appropriate penalty value (in Chinese CNY) suggested as ∈160,320. (2) Subsidies can vastly increase the amount of waste recycled and a carbon tax can reduce carbon emissions; the recommended values are suggested as subsidies ∈30,45 and carbon tax ∈40,70. (3) Compared to other policies, the combined policy of penalty–waste disposal charging fee–subsidy–carbon tax (160, 60, 45, 70) achieves the greatest environmental benefits in terms of reducing waste and carbon emission. (4) Governments should improve waste minimization incentive policies and gradually introduce trials for a carbon tax policy, encourage the use of digital governance combined with blockchain technology to regulate C&DW. These findings provide valuable insights for policymakers to develop effective waste reduction strategies and promote sustainability through the implementation of C&DWR theories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Andrea Savio; Giovanni Ferrari; Francesco Marinello; Andrea Pezzuolo; Maria Cristina Lavagnolo; Mariangela Guidolin;doi: 10.3390/su142215030
Bioenergy is being increasingly used worldwide to generate energy from biogas, biomethane, and other biofuels, bringing significant environmental and economic benefits. In Italy, biogas can significantly contribute to the achievement of the renewable energy targets set at the national and European levels. The exploitation of this energy source in a particular area is determined by its environmental and anthropic properties, as well as by the incentive system and the political will of decision makers. This paper analyzes the socioeconomic drivers and natural conditions triggering bioelectricity production in Italian regions. The analysis proposed here was performed in two steps—first, by identifying groups of similar regions for some natural, social, and economic variables, and then by modeling the historical trajectory of bioelectricity production for each identified group with innovation diffusion models. As a general finding, regions pertaining to the same group in terms of natural and socioeconomic conditions revealed a similar production pattern for bioelectricity, as confirmed by the results of diffusion modeling. On the basis of the diffusion modeling procedure, some scenario simulations were performed, which suggested the set-up of suitable policy actions for each group of regions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, Italy, United KingdomPublisher:Elsevier BV Authors: Lavagnolo, Maria Cristina; Girotto, Francesca; Rafieenia, Razieh; Danieli, Luciano; +1 AuthorsLavagnolo, Maria Cristina; Girotto, Francesca; Rafieenia, Razieh; Danieli, Luciano; Alibardi, Luca;handle: 2434/864871 , 11577/3266604
Abstract Two-stage anaerobic digestion (AD) batch tests were performed using the organic fraction of municipal solid waste as substrate. Effects of different combination of initial pH (5.5, 7, and 9) and food to microorganism (F/M) ratio (from 0.5 to 6 gVS/gVS) were investigated for hydrogen and methane productions during the first and the second stage of AD, respectively. Results showed that both initial pH and F/M ratio had an impact on hydrogen yield, hydrogen production rate and duration of lag phase. The highest hydrogen yield of 29.8 mLH2/gVS was obtained at initial pH of 5.5 and F/M ratio of 6. However, the highest hydrogen production rate (65 mLH2/gVS/d) was recorded at pH of 9 and F/M ratio of 6. Increasing the initial pH from 5.5 to 9, led to shorter lag phases for all F/M ratios. Methane production from second phase was not significantly influenced by the F/M ratios tested in the first digestion phase. When compared to single-phase AD, two-stage AD tests resulted in enhanced methane production rates from 37.3 to 68.5 mLCH4/gVS/d, reducing by half both the lag phase and the time required to reach maximum methane production.
Archivio istituziona... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.renene.2018.03.039Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.renene.2018.03.039Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.03.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu