- home
- Advanced Search
- Energy Research
- 14. Life underwater
- Energy Research
- 14. Life underwater
description Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Oxford University Press (OUP) Publicly fundedFunded by:NSF | Collaborative Research: E..., NSERC, NSF | LTREB: Effects of Warming... +4 projectsNSF| Collaborative Research: EPSCoR RII Track 2 Oklahoma and Kansas: A cyberCommons for Ecological Forecasting ,NSERC ,NSF| LTREB: Effects of Warming and Clipping on Coupling of Carbon and Water Cycles in a Tallgrass Prairie ,EC| GHG EUROPE ,NSF| RCN: Forecasts Of Resource and Environmental Changes: data Assimilation Science and Technology (FORECAST) ,NSF| Data-Model Fusion at AmeriFlux Sites: Towards Predictive Understanding of Seasonal and Interannual Variability in Net Ecosystem Exchange ,NSF| Development of a Data Assimilation Capability Towards Ecological Forecasting in a Data-Rich EraBing Song; Matthias Peichl; Andrej Varlagin; Leonardo Montagnani; Lutz Merbold; Janusz Olejnik; Mats Nilsson; Antonio Raschi; Asko Noormets; Yiqi Luo; Magnus Lund; Georg Wohlfahrt; Gerard Kiely; Beverly E. Law; Guirui Yu; Vincenzo Magliulo; Jiquan Chen; Ruisen Luo; Shuli Niu; Alessandro Cescatti;doi: 10.1093/jpe/rtu014
Aims Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and examined the global variation of the apparent activation energy (Ea), which characterizes the apparent temperature sensitivity of and its interannual variability (IAV) as well as their controlling factors. Methods We used carbon fluxes and meteorological data across FLUXNET sites to calculate mean annual temperature, temperature range, precipitation, global radiation, potential radiation, gross primary productivity and Re by averaging the daily values over the years in each site. Furthermore, we analyzed the sites with >8 years data to examine the IAV of Ea and calculated the standard deviation of Ea across years at each site to characterize IAV. Important Findings The results showed a widely global variation of Ea, with significantly lower values in the tropical and subtropical areas than in temperate and boreal areas, and significantly higher values in grasslands and wetlands than that in deciduous broadleaf forests and evergreen forests. Globally, spatial variations of Ea were explained by changes in temperature and an index of water availability with differing contribution of each explaining variable among climate zones and biomes. IAV and the corresponding coefficient of variation of Ea decreased with increasing latitude, but increased with radiation and corresponding mean annual temperature. The revealed patterns in the spatial and temporal variations of Ea and its controlling factors indicate divergent temperature sensitivity of R-e, which could help to improve our predictive understanding of R-e in response to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Oxford University Press (OUP) Publicly fundedFunded by:NSF | Collaborative Research: E..., NSERC, NSF | LTREB: Effects of Warming... +4 projectsNSF| Collaborative Research: EPSCoR RII Track 2 Oklahoma and Kansas: A cyberCommons for Ecological Forecasting ,NSERC ,NSF| LTREB: Effects of Warming and Clipping on Coupling of Carbon and Water Cycles in a Tallgrass Prairie ,EC| GHG EUROPE ,NSF| RCN: Forecasts Of Resource and Environmental Changes: data Assimilation Science and Technology (FORECAST) ,NSF| Data-Model Fusion at AmeriFlux Sites: Towards Predictive Understanding of Seasonal and Interannual Variability in Net Ecosystem Exchange ,NSF| Development of a Data Assimilation Capability Towards Ecological Forecasting in a Data-Rich EraBing Song; Matthias Peichl; Andrej Varlagin; Leonardo Montagnani; Lutz Merbold; Janusz Olejnik; Mats Nilsson; Antonio Raschi; Asko Noormets; Yiqi Luo; Magnus Lund; Georg Wohlfahrt; Gerard Kiely; Beverly E. Law; Guirui Yu; Vincenzo Magliulo; Jiquan Chen; Ruisen Luo; Shuli Niu; Alessandro Cescatti;doi: 10.1093/jpe/rtu014
Aims Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and examined the global variation of the apparent activation energy (Ea), which characterizes the apparent temperature sensitivity of and its interannual variability (IAV) as well as their controlling factors. Methods We used carbon fluxes and meteorological data across FLUXNET sites to calculate mean annual temperature, temperature range, precipitation, global radiation, potential radiation, gross primary productivity and Re by averaging the daily values over the years in each site. Furthermore, we analyzed the sites with >8 years data to examine the IAV of Ea and calculated the standard deviation of Ea across years at each site to characterize IAV. Important Findings The results showed a widely global variation of Ea, with significantly lower values in the tropical and subtropical areas than in temperate and boreal areas, and significantly higher values in grasslands and wetlands than that in deciduous broadleaf forests and evergreen forests. Globally, spatial variations of Ea were explained by changes in temperature and an index of water availability with differing contribution of each explaining variable among climate zones and biomes. IAV and the corresponding coefficient of variation of Ea decreased with increasing latitude, but increased with radiation and corresponding mean annual temperature. The revealed patterns in the spatial and temporal variations of Ea and its controlling factors indicate divergent temperature sensitivity of R-e, which could help to improve our predictive understanding of R-e in response to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu