- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Jamiu Adetayo Adeniran; Rafiu Olasunkanmi Yusuf; Bamidele Sunday Fakinle; Jacob Ademola Sonibare;Abstract Cement manufacturing contributes to the elevation of air pollutants in the atmosphere and thus impact on the nearby communities. This study assessed air quality in a major Cement Plant in Ibese Ogun State, Nigeria, through an ambient air quality monitoring and air emission dispersion modelling. Particulate Matter (PM) and gaseous pollutants were measured using portable samplers and AERMOD View was used for the emission dispersion modelling. Combustion products including SO2, NO, NO2, CO and VOCs were the gaseous pollutants detected along the complex fenceline and in the receptor environments. Pollutants measurements were undertaken at 23 locations within the fence line and receptor locations. The daily SO2 and NO2 Federal Ministry of Environment - Nigeria (FMEnv) limits were exceeded in ten (10) and five (5) locations along the fenceline, respectively. Particulates were detected in all the locations along the fenceline and in the communities. The cumulative gaseous pollutants resulting from simultaneous operations of all the identified plant air emission point sources are 0.01–276.13% of their respective 24-h limits along the fenceline, with 1-h SO2 within the threshold limit at all fenceline locations, but 1-h NOX exceeds the threshold limit at all locations 16–21 times. The 24-h CO and VOCs are within their limits at all fenceline locations; however the 24-h SO2 and NOX are breaching the limits at some locations 30–34 times (0.34–0.39% of the investigation period) and 44–87 times, respectively. Daily and Annual averaging concentrations of PM10 was 14.32–31.54% and 4.90–52.60% of their respective limits. Process facilities are the major point sources of atmospheric emissions identified in the factory. Several fugitive emission sources were also identified during the field work. Comprehensive evaluation of the fugitive emission sources should be carried out in the cement plant for immediate attention.
Atmospheric Pollutio... arrow_drop_down Atmospheric Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apr.2018.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Atmospheric Pollutio... arrow_drop_down Atmospheric Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apr.2018.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Jamiu Adetayo Adeniran; Rafiu Olasunkanmi Yusuf; Bamidele Sunday Fakinle; Jacob Ademola Sonibare;Abstract Cement manufacturing contributes to the elevation of air pollutants in the atmosphere and thus impact on the nearby communities. This study assessed air quality in a major Cement Plant in Ibese Ogun State, Nigeria, through an ambient air quality monitoring and air emission dispersion modelling. Particulate Matter (PM) and gaseous pollutants were measured using portable samplers and AERMOD View was used for the emission dispersion modelling. Combustion products including SO2, NO, NO2, CO and VOCs were the gaseous pollutants detected along the complex fenceline and in the receptor environments. Pollutants measurements were undertaken at 23 locations within the fence line and receptor locations. The daily SO2 and NO2 Federal Ministry of Environment - Nigeria (FMEnv) limits were exceeded in ten (10) and five (5) locations along the fenceline, respectively. Particulates were detected in all the locations along the fenceline and in the communities. The cumulative gaseous pollutants resulting from simultaneous operations of all the identified plant air emission point sources are 0.01–276.13% of their respective 24-h limits along the fenceline, with 1-h SO2 within the threshold limit at all fenceline locations, but 1-h NOX exceeds the threshold limit at all locations 16–21 times. The 24-h CO and VOCs are within their limits at all fenceline locations; however the 24-h SO2 and NOX are breaching the limits at some locations 30–34 times (0.34–0.39% of the investigation period) and 44–87 times, respectively. Daily and Annual averaging concentrations of PM10 was 14.32–31.54% and 4.90–52.60% of their respective limits. Process facilities are the major point sources of atmospheric emissions identified in the factory. Several fugitive emission sources were also identified during the field work. Comprehensive evaluation of the fugitive emission sources should be carried out in the cement plant for immediate attention.
Atmospheric Pollutio... arrow_drop_down Atmospheric Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apr.2018.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Atmospheric Pollutio... arrow_drop_down Atmospheric Pollution ResearchArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apr.2018.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu