- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Haider Ali; Taqi Cheema; Cheol Park;doi: 10.3390/en11020388
Turbulent flow mixing is essential in optimizing microalgal cultivation in raceway ponds. Microalgal cells are however highly sensitive to hydrodynamic stresses produced by turbulent mixing because of their small size. The mechanical properties (wall deformation and von Misses stress) of the microalgal cell wall structure under the influence of turbulent mixing are yet to be explored. High turbulence magnitudes damage microalgal cell walls by adversely affecting their mechanical properties which consequently destroy the microalgal cells and reduce the biofuel production. Therefore, such a study is required to improve the biofuel productivity of microalgal cells before their cell wall damage in raceway pond. This study developed a novel fluid–structure interaction (FSI)-based numerical model to investigate the effects of turbulent mixing on the cell wall damage of microalgal cells in raceway ponds. The study investigated microalgal cell wall damage at four different locations in a raceway pond in consideration of the effects of pond’s hydrodynamic and geometric properties. An experiment was conducted with a laboratory-scale raceway pond to compare and validate the numerical results by using time-dependent water velocities. Microalgal cell wall shear stress, cell wall deformation, and von Misses stress in the raceway pond were investigated by considering the effects of aspect ratios, water depths, and paddle wheel rotational speeds. Results showed that the proposed numerical model can be used as a prerequisite method for the selection of appropriate turbulent mixing. Microalgal cell wall damage is high in shallow and narrow raceway ponds with high paddle rotational speeds.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/388/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/388/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Cheol Woo Park; Haider Ali; Taqi Ahmad Cheema; Younghae Do; Ho-Sung Yoon;doi: 10.1002/bit.25443
pmid: 25163842
ABSTRACTIn the present study, a novel technique, which involves numerical computation of the mixing length of algae particles in raceway ponds, was used to evaluate the mixing process. A value of mixing length that is higher than the maximum streamwise distance (MSD) of algae cells indicates that the cells experienced an adequate turbulent mixing in the pond. A coupling methodology was adapted to map the pulsating effects of a 2D paddle wheel on a 3D raceway pond in this study. The turbulent mixing was examined based on the computations of mixing length, residence time, and algae cell distribution in the pond. The results revealed that the use of particle tracing methodology is an improved approach to define the mixing phenomenon more effectively. Moreover, the algae cell distribution aided in identifying the degree of mixing in terms of mixing length and residence time. Biotechnol. Bioeng. 2015;112: 297–307. © 2014 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.25443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.25443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Muhammad Talha Riaz; Taqi Ahmad Cheema; Muhammad Tayyab; Ali Ul Atas Khan; Khuram Pervez Amber; Muhammad Bilal Sajid; Cheol Woo Park;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | Robots Under Ice: Gatheri...UKRI| Robots Under Ice: Gathering Ice Hazard Data from BelowShahvaiz Khan; Taqi Ahmad Cheema; Malik Hassan; Muhammad Sohail Malik; Cheol Woo Park;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-022-03190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-022-03190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Atif Muzaffar; Cheol Woo Park; Muhammad Sohail Malik; Taqi Ahmad Cheema; Muhammad Tayyab; Muhammad Bilal Sajid;Abstract The conversion of hydel energy of the water vortex formed under gravity is well known in the form of gravitational water vortex turbines; however, the thermal energy exchange potential of the gravitational water vortex flow (GWVF) is yet to be explored. Heat transfer investigation of GWVF is important because the natural gravity being the sole driving force can considerably reduce the pumping power requirement. The present study is the first of its kind to investigate hydro-thermal characteristics of the gravitational water vortex heat exchanger (GWVHE) using an in-house developed experimental test rig. The proposed heat exchanger involves a spiral channel of rectangular cross-section constructed around a cylindrical basin generating a GWVF. For various inlet mass flow rates and temperature combinations, energy balance between the two water streams as well as Nusselt number correlations are determined. Experimentally, a reasonable energy agreement has been achieved with a maximum loss of 30% among the two different inlet temperature tested conditions. Moreover, maximum rise in cold side temperature for the tested conditions was 6K, whereas for the hot side the measure in temperature drop was 8K. A numerical simulation has also been conducted to virtually predict the performance of the designed heat exchanger. The simulation process has shown an improved energy balance with a maximum loss of 10%. A comparison of the experimental and numerical results shows that a GWVF has the potential to effectively exchange the heat between the two fluid streams moving under gravity. The performance of the proposed GWVHE with a pipe in pipe heat exchanger (PPHE) with parallel flow configuration (without vortex) has also been modeled and compared. For the same conditions, the maximum difference in temperature drop and gain between GWVHE and PPHE is 5K and 2.5K, respectively. The present study may act as a benchmark for the new class of GWVF based heat exchangers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.08.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.08.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Tauseef-ur Rehman; Mumtaz A. Qaisrani; M. Basit Shafiq; Yousra Filali Baba; Navid Aslfattahi; Amin Shahsavar; Taqi Ahmad Cheema; Cheol Woo Park;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:IOP Publishing Authors: Taqi Ahmad Cheema; Abdul Samad Saleem; Rizwan Ullah;In the present study the performance of two-stage gravitational water vortex turbine (GWVT) assembled in a conical basin with Savonius blade profile configuration has been investigated at different flow rate and vortex elevation. Two-stage GWVT with conical basin, not only increases the performance parameters with increase in flow parameters, but the lower stages also feed additional impact to the stage located above it because of forced vortex generation in the vicinity of top stage. Moreover, maximum hydraulic head drop near the orifice is the main contributor in the power generation of the bottom stage, by giving rise to strong tangential velocity. A stage starts power production as soon as the parabolic surface of the vortex approaches the corners of the blades even in the absence of a significant water-blade interaction. The developed analytical model qualitatively predicts the performance of the turbine minutely leading the experimental results quantitatively.
IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/291/1/012039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/291/1/012039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Safi Ahmed Memon; Taqi Ahmad Cheema; Gyu Man Kim; Cheol Woo Park;doi: 10.3390/en13215616
Thermal performance enhancement in microchannel heat sinks has recently become a challenge due to advancements in modern microelectronics, which demand compatibility with heat sinks able to dissipate ever-increasing amounts of heat. Recent advancements in manufacturing techniques, such as additive manufacturing, have made the modification of the microchannel heat sink geometry possible well beyond the conventional rectangular model to improve the cooling capacity of these devices. One such modification in microchannel geometry includes the introduction of secondary flow channels in the walls between adjacent mainstream microchannels. The present study computationally models secondary flow channels in regular trapezoidal and parallel orientations for fluid circulation through the microchannel walls in a heat sink design. The heat sink is made of silicon wafer, and water is used as the circulating fluid in this study. Continuity, momentum, and energy equations are solved for the fluid flow through the regular trapezoidal secondary flow and parallel secondary flow designs in the heat sink with I-type, C-type, and Z-type inlet–outlet configurations. Plots of velocity contours show that I-type geometry creates optimal flow disruption in the heat sink. Therefore, for this design, the pressure drop and base plate temperatures are plotted for a volumetric flow rate range, and corresponding contour plots are obtained. The results are compared with corresponding trends for the conventional rectangular microchannel design, and associated trends are explained. The study suggests that the flow phenomena such as flow impingement onto the microchannel walls and formation of vortices inside the secondary flow passages coupled with an increase in heat transfer area due to secondary flow passages may significantly improve the heat sink performance.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5616/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5616/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Publisher:IEEE Authors: Taqi Ahmad Cheema; Rizwanullah; Abdul Samad Saleem;Rotational speed, torque, brake power and mechanical efficiency are the factors which govern the performance of the gravitational water vortex turbine (GWVT). In the present study, the effect of different input parameters like flow rate, vortex height, hub diameter, blade position and notch angle have been investigated using various blade shapes and configurations. The results show variation in performance parameters of the runner under different conditions. It is concluded that best results are obtained at maximum vortex height, minimum possible notch angle and minimum possible blade height from the basin bottom. Moreover, the best configuration of blades is the straight blades fixed at an angle on the least possible diameter of the hub.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pgsret.2018.8685977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pgsret.2018.8685977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Muteeb Haq; Ali Jafry; Muhammad Abbasi; Muhammad Jawad; Saad Ahmad; Taqi Cheema; Naseem Abbas;doi: 10.3390/en15207808
Fuel spray characteristics influence combustion, which in turn has a direct impact on engine performance and emissions. Recently, there has been an increasing interest in novel castor oil biodiesel. However, few investigations have been performed that combine both numerical and experimental biodiesel spray analyses. Hence, in this paper, we aim to explore the spray behavior of castor and jatropha biodiesel by employing numerical and experimental methods under non-evaporating, varying injection, and ambient conditions. The experimental study was carried out in a control volume vessel (CVV) at high injection and ambient pressures. The fuel atomization was modelled in ANSYS Fluent using a Lagrangian/Eulerian multiphase formulation. The results revealed that the Kelvin–Helmholtz and Rayleigh–Taylor (KHRT) model coupled with the Taylor Analogy Breakup (TAB) model provide a better estimation of the penetration length (PL) and spray cone angle (SCA) compared to the KH and TAB models. On average, Jatropha biodiesel (JB-20) and castor biodiesel (CB-20) showed a 10% to 22% longer PL, 8% to 10.6% narrower spray cone angles, and 3% to 6% less spray area, respectively, compared to diesel. The numerical predictions showed that JB-20 and CB-20 had an around 24.7–48.3% larger Sauter mean diameter (SMD) and a 38.6–73.3% average mean diameter (AMD).
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/20/7808/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/20/7808/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Haider Ali; Taqi Cheema; Cheol Park;doi: 10.3390/en11020388
Turbulent flow mixing is essential in optimizing microalgal cultivation in raceway ponds. Microalgal cells are however highly sensitive to hydrodynamic stresses produced by turbulent mixing because of their small size. The mechanical properties (wall deformation and von Misses stress) of the microalgal cell wall structure under the influence of turbulent mixing are yet to be explored. High turbulence magnitudes damage microalgal cell walls by adversely affecting their mechanical properties which consequently destroy the microalgal cells and reduce the biofuel production. Therefore, such a study is required to improve the biofuel productivity of microalgal cells before their cell wall damage in raceway pond. This study developed a novel fluid–structure interaction (FSI)-based numerical model to investigate the effects of turbulent mixing on the cell wall damage of microalgal cells in raceway ponds. The study investigated microalgal cell wall damage at four different locations in a raceway pond in consideration of the effects of pond’s hydrodynamic and geometric properties. An experiment was conducted with a laboratory-scale raceway pond to compare and validate the numerical results by using time-dependent water velocities. Microalgal cell wall shear stress, cell wall deformation, and von Misses stress in the raceway pond were investigated by considering the effects of aspect ratios, water depths, and paddle wheel rotational speeds. Results showed that the proposed numerical model can be used as a prerequisite method for the selection of appropriate turbulent mixing. Microalgal cell wall damage is high in shallow and narrow raceway ponds with high paddle rotational speeds.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/388/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/388/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Cheol Woo Park; Haider Ali; Taqi Ahmad Cheema; Younghae Do; Ho-Sung Yoon;doi: 10.1002/bit.25443
pmid: 25163842
ABSTRACTIn the present study, a novel technique, which involves numerical computation of the mixing length of algae particles in raceway ponds, was used to evaluate the mixing process. A value of mixing length that is higher than the maximum streamwise distance (MSD) of algae cells indicates that the cells experienced an adequate turbulent mixing in the pond. A coupling methodology was adapted to map the pulsating effects of a 2D paddle wheel on a 3D raceway pond in this study. The turbulent mixing was examined based on the computations of mixing length, residence time, and algae cell distribution in the pond. The results revealed that the use of particle tracing methodology is an improved approach to define the mixing phenomenon more effectively. Moreover, the algae cell distribution aided in identifying the degree of mixing in terms of mixing length and residence time. Biotechnol. Bioeng. 2015;112: 297–307. © 2014 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.25443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.25443&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Muhammad Talha Riaz; Taqi Ahmad Cheema; Muhammad Tayyab; Ali Ul Atas Khan; Khuram Pervez Amber; Muhammad Bilal Sajid; Cheol Woo Park;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | Robots Under Ice: Gatheri...UKRI| Robots Under Ice: Gathering Ice Hazard Data from BelowShahvaiz Khan; Taqi Ahmad Cheema; Malik Hassan; Muhammad Sohail Malik; Cheol Woo Park;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-022-03190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-022-03190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Atif Muzaffar; Cheol Woo Park; Muhammad Sohail Malik; Taqi Ahmad Cheema; Muhammad Tayyab; Muhammad Bilal Sajid;Abstract The conversion of hydel energy of the water vortex formed under gravity is well known in the form of gravitational water vortex turbines; however, the thermal energy exchange potential of the gravitational water vortex flow (GWVF) is yet to be explored. Heat transfer investigation of GWVF is important because the natural gravity being the sole driving force can considerably reduce the pumping power requirement. The present study is the first of its kind to investigate hydro-thermal characteristics of the gravitational water vortex heat exchanger (GWVHE) using an in-house developed experimental test rig. The proposed heat exchanger involves a spiral channel of rectangular cross-section constructed around a cylindrical basin generating a GWVF. For various inlet mass flow rates and temperature combinations, energy balance between the two water streams as well as Nusselt number correlations are determined. Experimentally, a reasonable energy agreement has been achieved with a maximum loss of 30% among the two different inlet temperature tested conditions. Moreover, maximum rise in cold side temperature for the tested conditions was 6K, whereas for the hot side the measure in temperature drop was 8K. A numerical simulation has also been conducted to virtually predict the performance of the designed heat exchanger. The simulation process has shown an improved energy balance with a maximum loss of 10%. A comparison of the experimental and numerical results shows that a GWVF has the potential to effectively exchange the heat between the two fluid streams moving under gravity. The performance of the proposed GWVHE with a pipe in pipe heat exchanger (PPHE) with parallel flow configuration (without vortex) has also been modeled and compared. For the same conditions, the maximum difference in temperature drop and gain between GWVHE and PPHE is 5K and 2.5K, respectively. The present study may act as a benchmark for the new class of GWVF based heat exchangers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.08.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.08.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Tauseef-ur Rehman; Mumtaz A. Qaisrani; M. Basit Shafiq; Yousra Filali Baba; Navid Aslfattahi; Amin Shahsavar; Taqi Ahmad Cheema; Cheol Woo Park;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:IOP Publishing Authors: Taqi Ahmad Cheema; Abdul Samad Saleem; Rizwan Ullah;In the present study the performance of two-stage gravitational water vortex turbine (GWVT) assembled in a conical basin with Savonius blade profile configuration has been investigated at different flow rate and vortex elevation. Two-stage GWVT with conical basin, not only increases the performance parameters with increase in flow parameters, but the lower stages also feed additional impact to the stage located above it because of forced vortex generation in the vicinity of top stage. Moreover, maximum hydraulic head drop near the orifice is the main contributor in the power generation of the bottom stage, by giving rise to strong tangential velocity. A stage starts power production as soon as the parabolic surface of the vortex approaches the corners of the blades even in the absence of a significant water-blade interaction. The developed analytical model qualitatively predicts the performance of the turbine minutely leading the experimental results quantitatively.
IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/291/1/012039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/291/1/012039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Safi Ahmed Memon; Taqi Ahmad Cheema; Gyu Man Kim; Cheol Woo Park;doi: 10.3390/en13215616
Thermal performance enhancement in microchannel heat sinks has recently become a challenge due to advancements in modern microelectronics, which demand compatibility with heat sinks able to dissipate ever-increasing amounts of heat. Recent advancements in manufacturing techniques, such as additive manufacturing, have made the modification of the microchannel heat sink geometry possible well beyond the conventional rectangular model to improve the cooling capacity of these devices. One such modification in microchannel geometry includes the introduction of secondary flow channels in the walls between adjacent mainstream microchannels. The present study computationally models secondary flow channels in regular trapezoidal and parallel orientations for fluid circulation through the microchannel walls in a heat sink design. The heat sink is made of silicon wafer, and water is used as the circulating fluid in this study. Continuity, momentum, and energy equations are solved for the fluid flow through the regular trapezoidal secondary flow and parallel secondary flow designs in the heat sink with I-type, C-type, and Z-type inlet–outlet configurations. Plots of velocity contours show that I-type geometry creates optimal flow disruption in the heat sink. Therefore, for this design, the pressure drop and base plate temperatures are plotted for a volumetric flow rate range, and corresponding contour plots are obtained. The results are compared with corresponding trends for the conventional rectangular microchannel design, and associated trends are explained. The study suggests that the flow phenomena such as flow impingement onto the microchannel walls and formation of vortices inside the secondary flow passages coupled with an increase in heat transfer area due to secondary flow passages may significantly improve the heat sink performance.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5616/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5616/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Publisher:IEEE Authors: Taqi Ahmad Cheema; Rizwanullah; Abdul Samad Saleem;Rotational speed, torque, brake power and mechanical efficiency are the factors which govern the performance of the gravitational water vortex turbine (GWVT). In the present study, the effect of different input parameters like flow rate, vortex height, hub diameter, blade position and notch angle have been investigated using various blade shapes and configurations. The results show variation in performance parameters of the runner under different conditions. It is concluded that best results are obtained at maximum vortex height, minimum possible notch angle and minimum possible blade height from the basin bottom. Moreover, the best configuration of blades is the straight blades fixed at an angle on the least possible diameter of the hub.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pgsret.2018.8685977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pgsret.2018.8685977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Muteeb Haq; Ali Jafry; Muhammad Abbasi; Muhammad Jawad; Saad Ahmad; Taqi Cheema; Naseem Abbas;doi: 10.3390/en15207808
Fuel spray characteristics influence combustion, which in turn has a direct impact on engine performance and emissions. Recently, there has been an increasing interest in novel castor oil biodiesel. However, few investigations have been performed that combine both numerical and experimental biodiesel spray analyses. Hence, in this paper, we aim to explore the spray behavior of castor and jatropha biodiesel by employing numerical and experimental methods under non-evaporating, varying injection, and ambient conditions. The experimental study was carried out in a control volume vessel (CVV) at high injection and ambient pressures. The fuel atomization was modelled in ANSYS Fluent using a Lagrangian/Eulerian multiphase formulation. The results revealed that the Kelvin–Helmholtz and Rayleigh–Taylor (KHRT) model coupled with the Taylor Analogy Breakup (TAB) model provide a better estimation of the penetration length (PL) and spray cone angle (SCA) compared to the KH and TAB models. On average, Jatropha biodiesel (JB-20) and castor biodiesel (CB-20) showed a 10% to 22% longer PL, 8% to 10.6% narrower spray cone angles, and 3% to 6% less spray area, respectively, compared to diesel. The numerical predictions showed that JB-20 and CB-20 had an around 24.7–48.3% larger Sauter mean diameter (SMD) and a 38.6–73.3% average mean diameter (AMD).
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/20/7808/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/20/7808/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu