- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 France, France, Netherlands, Switzerland, Australia, United Kingdom, United KingdomPublisher:Wiley Funded by:ARC | ARC Centres of Excellence..., UKRI | Ghosts from summers past:..., NHMRC | A vision of healthy urban... +7 projectsARC| ARC Centres of Excellences - Grant ID: CE170100023 ,UKRI| Ghosts from summers past: quantifying the role of vegetation legacy to climatic extremes ,NHMRC| A vision of healthy urban design for NCD prevention ,NWO| The windy city ,NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR) ,DFG ,EC| urbisphere ,NSF| Meteorological Islands: How the Atmosphere Interacts with Large Individual Patches of Heterogeneity ,UKRI| Building Resilient Cities for Heat Waves ,UKRI| Building Resilient Cities for Heat WavesAuthors:Lipson, Mathew;
Lipson, Mathew
Lipson, Mathew in OpenAIREGrimmond, Sue;
Best, Martin;Grimmond, Sue
Grimmond, Sue in OpenAIREAbramowitz, Gab;
+41 AuthorsAbramowitz, Gab
Abramowitz, Gab in OpenAIRELipson, Mathew;
Lipson, Mathew
Lipson, Mathew in OpenAIREGrimmond, Sue;
Best, Martin;Grimmond, Sue
Grimmond, Sue in OpenAIREAbramowitz, Gab;
Coutts, Andrew; Tapper, Nigel;Abramowitz, Gab
Abramowitz, Gab in OpenAIREBaik, Jong‐jin;
Beyers, Meiring;Baik, Jong‐jin
Baik, Jong‐jin in OpenAIREBlunn, Lewis;
Boussetta, Souhail;Blunn, Lewis
Blunn, Lewis in OpenAIREBou-Zeid, Elie;
Bou-Zeid, Elie
Bou-Zeid, Elie in OpenAIREde Kauwe, Martin;
de Kauwe, Martin
de Kauwe, Martin in OpenAIREde Munck, Cécile;
de Munck, Cécile
de Munck, Cécile in OpenAIREDemuzere, Matthias;
Demuzere, Matthias
Demuzere, Matthias in OpenAIREFatichi, Simone;
Fatichi, Simone
Fatichi, Simone in OpenAIREFortuniak, Krzysztof;
Han, Beom‐soon;Fortuniak, Krzysztof
Fortuniak, Krzysztof in OpenAIREHendry, Margaret;
Hendry, Margaret
Hendry, Margaret in OpenAIREKikegawa, Yukihiro;
Kikegawa, Yukihiro
Kikegawa, Yukihiro in OpenAIREKondo, Hiroaki;
Lee, Doo‐il;Kondo, Hiroaki
Kondo, Hiroaki in OpenAIRELee, Sang‐hyun;
Lemonsu, Aude; Machado, Tiago;Lee, Sang‐hyun
Lee, Sang‐hyun in OpenAIREManoli, Gabriele;
Martilli, Alberto;Manoli, Gabriele
Manoli, Gabriele in OpenAIREMasson, Valéry;
Mcnorton, Joe;Masson, Valéry
Masson, Valéry in OpenAIREMeili, Naika;
Meili, Naika
Meili, Naika in OpenAIREMeyer, David;
Meyer, David
Meyer, David in OpenAIRENice, Kerry;
Nice, Kerry
Nice, Kerry in OpenAIREOleson, Keith;
Park, Seung‐bu;Oleson, Keith
Oleson, Keith in OpenAIRERoth, Michael;
Roth, Michael
Roth, Michael in OpenAIRESchoetter, Robert;
Schoetter, Robert
Schoetter, Robert in OpenAIRESimón-Moral, Andrés;
Simón-Moral, Andrés
Simón-Moral, Andrés in OpenAIRESteeneveld, Gert‐jan;
Steeneveld, Gert‐jan
Steeneveld, Gert‐jan in OpenAIRESun, Ting;
Takane, Yuya; Thatcher, Marcus;Sun, Ting
Sun, Ting in OpenAIRETsiringakis, Aristofanis;
Tsiringakis, Aristofanis
Tsiringakis, Aristofanis in OpenAIREVarentsov, Mikhail;
Varentsov, Mikhail
Varentsov, Mikhail in OpenAIREWang, Chenghao;
Wang, Chenghao
Wang, Chenghao in OpenAIREWang, Zhi‐hua;
Pitman, Andy;Wang, Zhi‐hua
Wang, Zhi‐hua in OpenAIREdoi: 10.1002/qj.4589
AbstractAccurately predicting weather and climate in cities is critical for safeguarding human health and strengthening urban resilience. Multimodel evaluations can lead to model improvements; however, there have been no major intercomparisons of urban‐focussed land surface models in over a decade. Here, in Phase 1 of the Urban‐PLUMBER project, we evaluate the ability of 30 land surface models to simulate surface energy fluxes critical to atmospheric meteorological and air quality simulations. We establish minimum and upper performance expectations for participating models using simple information‐limited models as benchmarks. Compared with the last major model intercomparison at the same site, we find broad improvement in the current cohort's predictions of short‐wave radiation, sensible and latent heat fluxes, but little or no improvement in long‐wave radiation and momentum fluxes. Models with a simple urban representation (e.g., ‘slab’ schemes) generally perform well, particularly when combined with sophisticated hydrological/vegetation models. Some mid‐complexity models (e.g., ‘canyon’ schemes) also perform well, indicating efforts to integrate vegetation and hydrology processes have paid dividends. The most complex models that resolve three‐dimensional interactions between buildings in general did not perform as well as other categories. However, these models also tended to have the simplest representations of hydrology and vegetation. Models without any urban representation (i.e., vegetation‐only land surface models) performed poorly for latent heat fluxes, and reasonably for other energy fluxes at this suburban site. Our analysis identified widespread human errors in initial submissions that substantially affected model performances. Although significant efforts are applied to correct these errors, we conclude that human factors are likely to influence results in this (or any) model intercomparison, particularly where participating scientists have varying experience and first languages. These initial results are for one suburban site, and future phases of Urban‐PLUMBER will evaluate models across 20 sites in different urban and regional climate zones.
Quarterly Journal of... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/11343/338314Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of the Royal Meteorological SocietyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of the Royal Meteorological SocietyArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalInstitut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/qj.4589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Quarterly Journal of... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/11343/338314Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of the Royal Meteorological SocietyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of the Royal Meteorological SocietyArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalInstitut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/qj.4589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors:Beatriz Sanchez;
Beatriz Sanchez
Beatriz Sanchez in OpenAIREMatthias Roth;
Matthias Roth
Matthias Roth in OpenAIREPratiman Patel;
Pratiman Patel
Pratiman Patel in OpenAIREAndrés Simón-Moral;
Andrés Simón-Moral
Andrés Simón-Moral in OpenAIREdoi: 10.3390/su151712834
handle: 10902/34008
Differences in land surface characteristics across a city produce great spatial and temporal variability in air temperature. This fact is particularly pronounced between urban and surrounding rural areas giving rise to the canopy-layer urban heat island (CL-UHI) phenomenon. In the present study, we apply the dimensional analysis technique to develop a simple semi-empirical equation to map daily maximum CL-UHI (UHImax) intensities during nighttime over the city of Singapore for specific weather conditions. By adopting the methodology proposed by Theeuwes et al., but selecting meteorological and morphological parameters that affect UHImax intensity most for Singapore, evaluation of the developed equation shows good agreement with observations (RMSE = 1.13 K and IOA = 0.76). Model performance depends strongly on wind conditions and is best during weak winds when ‘ideal’ conditions for UHI development are approached (RMSE = 0.65 K and IOA = 0.85). Results using the simple equation developed to map UHImax intensities in Singapore under dry weather conditions are comparable to those obtained from more sophisticated numerical models, which demand significant computational resources, and the complex parameterizations involved require expertise to carry out the simulations. The resulting maps of the present study can be used to investigate less favorable thermal conditions and assess population vulnerability to a certain temperature excess, as well as provide insights for urban planning strategies of mitigation measures according to the land cover and morphology of a location.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 165visibility views 165 download downloads 11 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu