- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Elsevier BV Authors: Mildrexler, David; Yang, Zhiqiang; Cohen, Warren B.; Bell, David M.;ABSTRACT Increasing forest stress and tree mortality has been directly linked to combinations of drought and high temperatures. The climatic changes expected during the next decades – large increases in mean temperature, increased heat waves, and significant long-term regional drying in the western USA – will likely increase chronic forest stress and mortality. The aim of this research is to develop and apply a new forest vulnerability index (FVI) associated with drought and high temperatures across the Pacific Northwest region (PNW; Oregon and Washington) of the USA during the MODIS Aqua era (since 2003). Our technique incorporates the alterations to canopy water and energy exchange processes caused by drought and high temperatures with spatially continuous MODIS land surface temperature (LST) and evapotranspiration (ET), and with Parameter-elevation Relationships on Independent Slopes Model (PRISM) precipitation (P) data. With P and ET, we calculate a monthly water balance variable for each individual pixel normalized by forest type group (FTG), and then difference the water balance with the corresponding normalized monthly mean LST to calculate a monthly forest stress index (FSI). We then extract the pixel-specific (800-m resolution) statistically significant temporal trends of the FSI from 2003 to 2012 by month (April to October). The FVI is the slope of the monthly FSI across years, such that there is a FVI for each month. Statistically significant positive slopes indicate interannual increases in stress leading to expected forest vulnerability (positive FVI) for a given month. Positive FVI values were concentrated in the months of August and September, with peak vulnerability occurring at different times for different FTGs. Overall, increased vulnerability rates were the highest in drier FTGs such as Ponderosa Pine, Juniper, and Lodgepole Pine. Western Larch and Fir/Spruce/Mountain Hemlock groups occupy moister sites but also had relatively high proportion of positive FVI values. The Douglas-fir group had the second largest total area of increased vulnerability due to its large areal extent in the study area. Based on an analysis using imagery viewed in Google Earth, we confirm that areas with increased vulnerability are associated with greater amounts of stress and mortality. The FVI is a new way to conceptualize and monitor forest vulnerability based on first-order principles and has the potential to be generalized to other geographical areas.
Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2015.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 75 citations 75 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2015.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Matthew Kwit; David M. Bell; James S. Clark; Kai Zhu;doi: 10.1111/gcb.12425
pmid: 24932467
The recent global increase in forest mortality episodes could not have been predicted from current vegetation models that are calibrated to regional climate data. Physiological studies show that mortality results from interactions between climate and competition at the individual scale. Models of forest response to climate do not include interactions because they are hard to estimate and require long-term observations on individual trees obtained at frequent (annual) intervals. Interactions involve multiple tree responses that can only be quantified if these responses are estimated as a joint distribution. A new approach provides estimates of climate–competition interactions in two critical ways, (i) among individuals, as a joint distribution of responses to combinations of inputs, such as resources and climate, and (ii) within individuals, due to allocation requirements that control outputs, such as demographic rates. Application to 20 years of data from climate and competition gradients shows that interactions control forest responses, and their omission from models leads to inaccurate predictions. Species most vulnerable to increasing aridity are not those that show the largest growth response to precipitation, but rather depend on interactions with the local resource environment. This first assessment of regional species vulnerability that is based on the scale at which climate operates, individual trees competing for carbon and water, supports predictions of potential savannification in the southeastern US.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu84 citations 84 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Authors: Daniel L. Perret; David M. Bell; Harold S. J. Zald;doi: 10.1111/gcb.70052
pmid: 39907028
ABSTRACTHigh‐elevation subalpine forests are experiencing rapid changes in climatic conditions, biological disturbances, and wildfire regimes. Despite this, evidence is mixed as to whether they will undergo major ecological transformation or be resilient to a confluence of global change drivers. Here we use subalpine fir (Abies lasiocarpa) and Englemann spruce (Picea engelmannii), which form co‐dominant forests through much of the western United States, to investigate how species' demographic responses to global change influence forest community‐wide resilience. We do this by adapting and building on an existing framework for post‐disturbance ecological reorganization. With forest inventory data from the United States Forest Service Forest Inventory and Analysis (FIA) program, we quantify population trends for subalpine fir and Engelmann spruce across their joint distribution and organize them in a new conceptual framework for categorizing forest community trajectories. We then build hierarchical Bayesian demographic models of subalpine fir and Engelmann spruce mortality, regeneration, and recruitment as functions of climate, disturbance extent and severity, and forest structural predictors. We bring demographic predictions together in a multinomial classification model to quantify how combinations of demographic rates influence overall forest community trajectories. Finally, we apply future climate and disturbance scenarios to our demographic models to explore how subalpine forest resilience may change in the future. We found strong negative relationships between the demography of both species and disturbance extent and severity, and climatic responses in line with an energy‐limited forest system. Future scenario model predictions indicate that reducing wildfire extent and severity can greatly bolster overall subalpine forest resilience; the preferred way to do this will vary according to fire history, forest type, biophysical setting, and land tenure. Opportunities for high‐impact management interventions are concentrated in the northern Rocky Mountains, with centers of ongoing resilience in parts of the Oregon and Washington Cascades.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Wiley Clark, James S; Iverson, Louis; Woodall, Christopher W; Allen, Craig D; Bell, David M; Bragg, Don C; D'Amato, Anthony W; Davis, Frank W; Hersh, Michelle H; Ibanez, Ines; Jackson, Stephen T; Matthews, Stephen; Pederson, Neil; Peters, Matthew; Schwartz, Mark W; Waring, Kristen M; Zimmermann, Niklaus E;AbstractWe synthesize insights from current understanding of drought impacts at stand‐to‐biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand‐level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the easternUS, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate‐induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought‐tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/0dg4t07pData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 479 citations 479 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/0dg4t07pData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Authors: David A. Bell (10064020); John B. Bradford (2907467); William K. Lauenroth (2903648);Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand‐scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing‐season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.
Mountain Scholar arrow_drop_down Mountain ScholarArticle . 2014Full-Text: https://hdl.handle.net/20.500.11919/783Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2014License: PDMData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-0093.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Mountain Scholar arrow_drop_down Mountain ScholarArticle . 2014Full-Text: https://hdl.handle.net/20.500.11919/783Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2014License: PDMData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-0093.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:The Royal Society Funded by:NSF | CDI-Type II: Integrating ...NSF| CDI-Type II: Integrating Algorithmic and Stochastic Modeling Techniques for Environmental PredictionBen Vierra; Matthew Kwit; James S. Clark; Kai Zhu; Anne Stine; David M. Bell;Anticipating how biodiversity will respond to climate change is challenged by the fact that climate variables affect individuals in competition with others, but interest lies at the scale of species and landscapes. By omitting the individual scale, models cannot accommodate the processes that determine future biodiversity. We demonstrate how individual-scale inference can be applied to the problem of anticipating vulnerability of species to climate. The approach places climate vulnerability in the context of competition for light and soil moisture. Sensitivities to climate and competition interactions aggregated from the individual tree scale provide estimates of which species are vulnerable to which variables in different habitats. Vulnerability is explored in terms of specific demographic responses (growth, fecundity and survival) and in terms of the synthetic response (the combination of demographic rates), termed climate tracking. These indices quantify risks for individuals in the context of their competitive environments. However, by aggregating in specific ways (over individuals, years, and other input variables), we provide ways to summarize and rank species in terms of their risks from climate change.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2011.0183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2011.0183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United States, GermanyPublisher:Wiley Funded by:NSF | Scaling Up: Joint Worksho...NSF| Scaling Up: Joint Workshops on Continental-Scale Population and Community Ecology and EducationAuthors: Emily V. Moran; Florian Hartig; David M. Bell;doi: 10.1111/gcb.13000
pmid: 26061811
AbstractRecognition of the importance of intraspecific variation in ecological processes has been growing, but empirical studies and models of global change have only begun to address this issue in detail. This review discusses sources and patterns of intraspecific trait variation and their consequences for understanding how ecological processes and patterns will respond to global change. We examine how current ecological models and theories incorporate intraspecific variation, review existing data sources that could help parameterize models that account for intraspecific variation in global change predictions, and discuss new data that may be needed. We provide guidelines on when it is most important to consider intraspecific variation, such as when trait variation is heritable or when nonlinear relationships are involved. We also highlight benefits and limitations of different model types and argue that many common modeling approaches such as matrix population models or global dynamic vegetation models can allow a stronger consideration of intraspecific trait variation if the necessary data are available. We recommend that existing data need to be made more accessible, though in some cases, new experiments are needed to disentangle causes of variation.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/3kf5g4wjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 265 citations 265 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/3kf5g4wjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: David M. Bell; John B. Bradford; William K. Lauenroth;doi: 10.1111/gcb.12504
pmid: 24353188
AbstractClimate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high‐elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high‐elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high‐elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high‐elevation species to climatic changes.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Funded by:NSF | Long-Term Ecological Rese..., NSF | Long-Term Ecological Rese..., NSF | LTER: Long-Term Ecologica...NSF| Long-Term Ecological Research at the H.J. Andrews Experimental Forest (LTER6) ,NSF| Long-Term Ecological Research at the H.J. Andrews Experimental Forest (LTER7) ,NSF| LTER: Long-Term Ecological Research at the H.J. Andrews Experimental Forest (LTER8)Hankyu Kim; Brenda C. McComb; Sarah J. K. Frey; David M. Bell; Matthew G. Betts;AbstractClimate change is contributing to biodiversity redistributions and species declines. However, cooler microclimate conditions provided by old‐growth forest structures compared with surrounding open or younger forests have been hypothesized to provide thermal refugia for species that are sensitive to climate warming and dampen the negative effects of warming on population trends of animals (i.e., the microclimate buffering hypothesis). In addition to thermal refugia, the compositional and structural diversity of old‐growth forest vegetation itself may provide resources to species that are less available in forests with simpler structure (i.e., the insurance hypothesis). We used 8 years of breeding bird abundance data from a forested watershed, accompanied with sub‐canopy temperature data, and ground‐ and LiDAR‐based vegetation data to test these hypotheses and identify factors influencing bird population changes from 2011 to 2018. After accounting for imperfect detection, we found that for 5 of 20 bird species analyzed, abundance trends tended to be less negative or neutral at sites with cooler microclimates, which supports the microclimate buffering hypothesis. Negative effects of warming on two species were also reduced in locations with greater forest compositional diversity supporting the insurance hypothesis. We provide the first empirical evidence that complex forest structure and vegetation diversity confer microclimatic advantages to some animal populations in the face of climate change. Conservation of old‐growth forests, or their characteristics in managed forests, could help slow the negative effects of climate warming on some breeding bird populations via microclimate buffering and possibly insurance effects.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Elsevier BV Authors: Mildrexler, David; Yang, Zhiqiang; Cohen, Warren B.; Bell, David M.;ABSTRACT Increasing forest stress and tree mortality has been directly linked to combinations of drought and high temperatures. The climatic changes expected during the next decades – large increases in mean temperature, increased heat waves, and significant long-term regional drying in the western USA – will likely increase chronic forest stress and mortality. The aim of this research is to develop and apply a new forest vulnerability index (FVI) associated with drought and high temperatures across the Pacific Northwest region (PNW; Oregon and Washington) of the USA during the MODIS Aqua era (since 2003). Our technique incorporates the alterations to canopy water and energy exchange processes caused by drought and high temperatures with spatially continuous MODIS land surface temperature (LST) and evapotranspiration (ET), and with Parameter-elevation Relationships on Independent Slopes Model (PRISM) precipitation (P) data. With P and ET, we calculate a monthly water balance variable for each individual pixel normalized by forest type group (FTG), and then difference the water balance with the corresponding normalized monthly mean LST to calculate a monthly forest stress index (FSI). We then extract the pixel-specific (800-m resolution) statistically significant temporal trends of the FSI from 2003 to 2012 by month (April to October). The FVI is the slope of the monthly FSI across years, such that there is a FVI for each month. Statistically significant positive slopes indicate interannual increases in stress leading to expected forest vulnerability (positive FVI) for a given month. Positive FVI values were concentrated in the months of August and September, with peak vulnerability occurring at different times for different FTGs. Overall, increased vulnerability rates were the highest in drier FTGs such as Ponderosa Pine, Juniper, and Lodgepole Pine. Western Larch and Fir/Spruce/Mountain Hemlock groups occupy moister sites but also had relatively high proportion of positive FVI values. The Douglas-fir group had the second largest total area of increased vulnerability due to its large areal extent in the study area. Based on an analysis using imagery viewed in Google Earth, we confirm that areas with increased vulnerability are associated with greater amounts of stress and mortality. The FVI is a new way to conceptualize and monitor forest vulnerability based on first-order principles and has the potential to be generalized to other geographical areas.
Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2015.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 75 citations 75 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2015.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Matthew Kwit; David M. Bell; James S. Clark; Kai Zhu;doi: 10.1111/gcb.12425
pmid: 24932467
The recent global increase in forest mortality episodes could not have been predicted from current vegetation models that are calibrated to regional climate data. Physiological studies show that mortality results from interactions between climate and competition at the individual scale. Models of forest response to climate do not include interactions because they are hard to estimate and require long-term observations on individual trees obtained at frequent (annual) intervals. Interactions involve multiple tree responses that can only be quantified if these responses are estimated as a joint distribution. A new approach provides estimates of climate–competition interactions in two critical ways, (i) among individuals, as a joint distribution of responses to combinations of inputs, such as resources and climate, and (ii) within individuals, due to allocation requirements that control outputs, such as demographic rates. Application to 20 years of data from climate and competition gradients shows that interactions control forest responses, and their omission from models leads to inaccurate predictions. Species most vulnerable to increasing aridity are not those that show the largest growth response to precipitation, but rather depend on interactions with the local resource environment. This first assessment of regional species vulnerability that is based on the scale at which climate operates, individual trees competing for carbon and water, supports predictions of potential savannification in the southeastern US.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu84 citations 84 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Authors: Daniel L. Perret; David M. Bell; Harold S. J. Zald;doi: 10.1111/gcb.70052
pmid: 39907028
ABSTRACTHigh‐elevation subalpine forests are experiencing rapid changes in climatic conditions, biological disturbances, and wildfire regimes. Despite this, evidence is mixed as to whether they will undergo major ecological transformation or be resilient to a confluence of global change drivers. Here we use subalpine fir (Abies lasiocarpa) and Englemann spruce (Picea engelmannii), which form co‐dominant forests through much of the western United States, to investigate how species' demographic responses to global change influence forest community‐wide resilience. We do this by adapting and building on an existing framework for post‐disturbance ecological reorganization. With forest inventory data from the United States Forest Service Forest Inventory and Analysis (FIA) program, we quantify population trends for subalpine fir and Engelmann spruce across their joint distribution and organize them in a new conceptual framework for categorizing forest community trajectories. We then build hierarchical Bayesian demographic models of subalpine fir and Engelmann spruce mortality, regeneration, and recruitment as functions of climate, disturbance extent and severity, and forest structural predictors. We bring demographic predictions together in a multinomial classification model to quantify how combinations of demographic rates influence overall forest community trajectories. Finally, we apply future climate and disturbance scenarios to our demographic models to explore how subalpine forest resilience may change in the future. We found strong negative relationships between the demography of both species and disturbance extent and severity, and climatic responses in line with an energy‐limited forest system. Future scenario model predictions indicate that reducing wildfire extent and severity can greatly bolster overall subalpine forest resilience; the preferred way to do this will vary according to fire history, forest type, biophysical setting, and land tenure. Opportunities for high‐impact management interventions are concentrated in the northern Rocky Mountains, with centers of ongoing resilience in parts of the Oregon and Washington Cascades.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Wiley Clark, James S; Iverson, Louis; Woodall, Christopher W; Allen, Craig D; Bell, David M; Bragg, Don C; D'Amato, Anthony W; Davis, Frank W; Hersh, Michelle H; Ibanez, Ines; Jackson, Stephen T; Matthews, Stephen; Pederson, Neil; Peters, Matthew; Schwartz, Mark W; Waring, Kristen M; Zimmermann, Niklaus E;AbstractWe synthesize insights from current understanding of drought impacts at stand‐to‐biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand‐level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the easternUS, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate‐induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought‐tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/0dg4t07pData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 479 citations 479 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/0dg4t07pData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Authors: David A. Bell (10064020); John B. Bradford (2907467); William K. Lauenroth (2903648);Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand‐scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing‐season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.
Mountain Scholar arrow_drop_down Mountain ScholarArticle . 2014Full-Text: https://hdl.handle.net/20.500.11919/783Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2014License: PDMData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-0093.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Mountain Scholar arrow_drop_down Mountain ScholarArticle . 2014Full-Text: https://hdl.handle.net/20.500.11919/783Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2014License: PDMData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/14-0093.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:The Royal Society Funded by:NSF | CDI-Type II: Integrating ...NSF| CDI-Type II: Integrating Algorithmic and Stochastic Modeling Techniques for Environmental PredictionBen Vierra; Matthew Kwit; James S. Clark; Kai Zhu; Anne Stine; David M. Bell;Anticipating how biodiversity will respond to climate change is challenged by the fact that climate variables affect individuals in competition with others, but interest lies at the scale of species and landscapes. By omitting the individual scale, models cannot accommodate the processes that determine future biodiversity. We demonstrate how individual-scale inference can be applied to the problem of anticipating vulnerability of species to climate. The approach places climate vulnerability in the context of competition for light and soil moisture. Sensitivities to climate and competition interactions aggregated from the individual tree scale provide estimates of which species are vulnerable to which variables in different habitats. Vulnerability is explored in terms of specific demographic responses (growth, fecundity and survival) and in terms of the synthetic response (the combination of demographic rates), termed climate tracking. These indices quantify risks for individuals in the context of their competitive environments. However, by aggregating in specific ways (over individuals, years, and other input variables), we provide ways to summarize and rank species in terms of their risks from climate change.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2011.0183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2011.0183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United States, GermanyPublisher:Wiley Funded by:NSF | Scaling Up: Joint Worksho...NSF| Scaling Up: Joint Workshops on Continental-Scale Population and Community Ecology and EducationAuthors: Emily V. Moran; Florian Hartig; David M. Bell;doi: 10.1111/gcb.13000
pmid: 26061811
AbstractRecognition of the importance of intraspecific variation in ecological processes has been growing, but empirical studies and models of global change have only begun to address this issue in detail. This review discusses sources and patterns of intraspecific trait variation and their consequences for understanding how ecological processes and patterns will respond to global change. We examine how current ecological models and theories incorporate intraspecific variation, review existing data sources that could help parameterize models that account for intraspecific variation in global change predictions, and discuss new data that may be needed. We provide guidelines on when it is most important to consider intraspecific variation, such as when trait variation is heritable or when nonlinear relationships are involved. We also highlight benefits and limitations of different model types and argue that many common modeling approaches such as matrix population models or global dynamic vegetation models can allow a stronger consideration of intraspecific trait variation if the necessary data are available. We recommend that existing data need to be made more accessible, though in some cases, new experiments are needed to disentangle causes of variation.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/3kf5g4wjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 265 citations 265 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/3kf5g4wjData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: David M. Bell; John B. Bradford; William K. Lauenroth;doi: 10.1111/gcb.12504
pmid: 24353188
AbstractClimate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high‐elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high‐elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high‐elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high‐elevation species to climatic changes.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Funded by:NSF | Long-Term Ecological Rese..., NSF | Long-Term Ecological Rese..., NSF | LTER: Long-Term Ecologica...NSF| Long-Term Ecological Research at the H.J. Andrews Experimental Forest (LTER6) ,NSF| Long-Term Ecological Research at the H.J. Andrews Experimental Forest (LTER7) ,NSF| LTER: Long-Term Ecological Research at the H.J. Andrews Experimental Forest (LTER8)Hankyu Kim; Brenda C. McComb; Sarah J. K. Frey; David M. Bell; Matthew G. Betts;AbstractClimate change is contributing to biodiversity redistributions and species declines. However, cooler microclimate conditions provided by old‐growth forest structures compared with surrounding open or younger forests have been hypothesized to provide thermal refugia for species that are sensitive to climate warming and dampen the negative effects of warming on population trends of animals (i.e., the microclimate buffering hypothesis). In addition to thermal refugia, the compositional and structural diversity of old‐growth forest vegetation itself may provide resources to species that are less available in forests with simpler structure (i.e., the insurance hypothesis). We used 8 years of breeding bird abundance data from a forested watershed, accompanied with sub‐canopy temperature data, and ground‐ and LiDAR‐based vegetation data to test these hypotheses and identify factors influencing bird population changes from 2011 to 2018. After accounting for imperfect detection, we found that for 5 of 20 bird species analyzed, abundance trends tended to be less negative or neutral at sites with cooler microclimates, which supports the microclimate buffering hypothesis. Negative effects of warming on two species were also reduced in locations with greater forest compositional diversity supporting the insurance hypothesis. We provide the first empirical evidence that complex forest structure and vegetation diversity confer microclimatic advantages to some animal populations in the face of climate change. Conservation of old‐growth forests, or their characteristics in managed forests, could help slow the negative effects of climate warming on some breeding bird populations via microclimate buffering and possibly insurance effects.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu