- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Rebecca Esselman; Daniel Brown; Christine J. Kirchhoff;AbstractAdapting to climate change requires the production and use of climate information to inform adaptation decisions. By facilitating sustained interaction between science producers, boundary organizations narrow the gap between science and decision-making and foster the co-production of actionable knowledge. While traditional boundary organization approaches focused on intense one-on-one interactions between producers and users increases usability, this approach requires significant time and resources. Forming “boundary chains”, linking complimentary boundary organizations together, may reduce those costs. In this paper, we use longitudinal observations of a boundary chain, interviews and surveys to explore: (1) how producer-user interactions increase understanding and information usability and (2) if and how efficiencies in climate information production, dissemination and use arise as a result of the boundary chain. We find that forming and sustaining an effective boundary chain requires not only interest, commitment and investment from every link in the chain but also a level of non-overlapping mutual dependency and complementary skill sets. In this case, GLISA’s strength in producing scientific information and their credibility as climate scientists and HRWC’s strengths in facilitation, connection with potential information users, and their recognition and reputation in the watershed add value to the boundary chain enabling the boundary chain to accomplish more with greater efficiency than if each organization in the chain tried to work independently. Finally, data show how the boundary chain increased efficiencies in educating potential users about the strengths and limitations of climate science and improving the production, dissemination, and use of climate information.
Climate Risk Managem... arrow_drop_down Climate Risk ManagementArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Climate Risk Managem... arrow_drop_down Climate Risk ManagementArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Australia, Australia, Germany, India, France, Netherlands, United States, United Kingdom, Netherlands, France, United States, Spain, Netherlands, France, Australia, IndiaPublisher:Springer Science and Business Media LLC Funded by:SSHRC, WT | Does household food biodi..., EC | IMBALANCE-P +4 projectsSSHRC ,WT| Does household food biodiversity protect adults against malnutrition and favour the resilience of Shawi Indigenous households to climate change related events? ,EC| IMBALANCE-P ,NSF| Collaborative Research: Workshop: Engaging students in science for international decision making: Colorado, October 2019/ Chile, December 2019 ,UKRI| "Environmental Policy and Development" Topic: Assessing progress in climate change adaptation at different levels ,ANR| STORISK ,UKRI| LSE Doctoral Training PartnershipKaty Davis; Indra D. Bhatt; Tara Chen; Nicholas Philip Simpson; Stephanie E. Austin; Christopher H. Trisos; Brian Pentz; Luckson Zvobgo; Jan Petzold; Jan Petzold; Avery Hill; Jordi Sardans; Nicole van Maanen; Leah Gichuki; Bianca van Bavel; Mariella Siña; Timo Leiter; Mia Wannewitz; Cristina A. Mullin; Cristina A. Mullin; Jan C. Minx; Aidan D. Farrell; Deepal Doshi; Sherilee L. Harper; Michael D. Morecroft; Jennifer Niemann; Adelle Thomas; Thelma Zulfawu Abu; Justice Issah Musah-Surugu; Justice Issah Musah-Surugu; Rachel Bezner Kerr; Stephanie L. Barr; Eranga K. Galappaththi; Eranga K. Galappaththi; Eranga K. Galappaththi; James D. Ford; Custodio Matavel; Philip Antwi-Agyei; Yuanyuan Shang; Yuanyuan Shang; Neal R. Haddaway; Neal R. Haddaway; Emily Baker; Marjolijn Haasnoot; Mohammad Aminur Rahman Shah; Zinta Zommers; Ivan Villaverde Canosa; Malcolm Araos; Gabrielle Wong-Parodi; Chandni Singh; Ingrid Arotoma-Rojas; Miriam Nielsen; Miriam Nielsen; Alyssa Gatt; Anuszka Mosurska; Carolyn A. F. Enquist; Julia B. Pazmino Murillo; Vhalinavho Khavhagali; Julia Pelaez Avila; Delphine Deryng; Hasti Trivedi; Giulia Scarpa; Eunice A Salubi; Caitlin Grady; Robbert Biesbroek; Lea Berrang-Ford; Alexandra Paige Fischer; Alexandra Harden; Gabriela Nagle Alverio; Neha Chauhan; Edmond Totin; Andrew Forbes; Shinny Thakur; Susan J. Elliott; Alexandre K. Magnan; Alexandre K. Magnan; Portia Adade Williams; Katharine J. Mach; Kripa Jagannathan; Kripa Jagannathan; Souha Ouni; Katherine E. Browne; Shaugn Coggins; Christine J. Kirchhoff; Warda Ajaz; Tanvi Agrawal; Carys Richards; Carys Richards; Emily Theokritoff; Lolita Shaila Safaee Chalkasra; Lolita Shaila Safaee Chalkasra; Josep Peñuelas; Tabea Lissner; Erin Coughlan de Perez; Erin Coughlan de Perez; Gina Marie Maskell; Max Callaghan; Roopam Shukla; Matthias Garschagen; Rebecca R. Hernandez; Garry Sotnik; Emily Duncan; Praveen Kumar; Praveen Kumar; Christa Anderson; Shuaib Lwasa; Nicola Ulibarri; Greeshma Hegde; Lam T. M. Huynh; Jiren Xu; Matthew Jurjonas; Matthew Jurjonas; Oliver Lilford; Donovan Campbell; Raquel Ruiz-Díaz; Tom Hawxwell; Tom Hawxwell; Patricia Nayna Schwerdtle; Patricia Nayna Schwerdtle; Patricia Nayna Schwerdtle; Kathryn Dana Sjostrom; Elisabeth A. Gilmore; Alexandra Lesnikowski; Carol Zavaleta-Cortijo; Carol Zavaleta-Cortijo; Sienna Templeman; Sienna Templeman; Idowu Ajibade; Nikita Charles Hamilton; Lynée L. Turek-Hankins; Asha Sitati; William Kakenmaster; Megan Lukas-Sithole; Diana Reckien; Abraham Marshall Nunbogu; A. R. Siders; Vasiliki I. Chalastani; Pratik Pokharel; Elphin Tom Joe; Joshua Mullenite; Alcade C Segnon; Alcade C Segnon; Kathryn Bowen; Kathryn Bowen; Kathryn Bowen; Steven Koller; Mark New; Mark New; Maarten van Aalst; Maarten van Aalst; Lindsay C. Stringer;handle: 10919/108066 , 10568/116150 , 11343/309955
Assessing global progress on human adaptation to climate change is an urgent priority. Although the literature on adaptation to climate change is rapidly expanding, little is known about the actual extent of implementation. We systematically screened >48,000 articles using machine learning methods and a global network of 126 researchers. Our synthesis of the resulting 1,682 articles presents a systematic and comprehensive global stocktake of implemented human adaptation to climate change. Documented adaptations were largely fragmented, local and incremental, with limited evidence of transformational adaptation and negligible evidence of risk reduction outcomes. We identify eight priorities for global adaptation research: assess the effectiveness of adaptation responses, enhance the understanding of limits to adaptation, enable individuals and civil society to adapt, include missing places, scholars and scholarship, understand private sector responses, improve methods for synthesizing different forms of evidence, assess the adaptation at different temperature thresholds, and improve the inclusion of timescale and the dynamics of 536 responses.
CORE arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/2kc9v3vfData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/116150Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABNature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01170-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 359 citations 359 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/2kc9v3vfData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/116150Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABNature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01170-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:NSF | CAREER: Humanizing Engine...NSF| CAREER: Humanizing Engineering and Resilience: An Integrated Research and Education Approach to Understand and Enhance Infrastructure ResilienceAuthors: Matthew A. Bizer; Christine J. Kirchhoff; Jack L. Segal; W.L. Patenaude;pmid: 40117929
As critical infrastructure systems consider whether and how to adapt and build resilience to climate variability and change, more research is needed to holistically explore the dynamics of resilience-building changes over time. We begin to fill this gap with a case study of the Rhode Island public wastewater sector. The Rhode Island Department of Environmental Management has invested significant funding, technical assistance, capacity building, and regulatory pressure to help publicly owned wastewater systems build resilience to climate challenges since 2010. To trace, assess, and understand the dynamics of resilience-building efforts over time, we interviewed wastewater utility and municipal personnel using event history calendars (EHCs). EHCs helped respondents recall details of relevant events, including potentially disruptive storms/incidents, and how they responded, including large- and small-scale adaptations, during the study period (2010-2023). We used EHCs to trace resilience and transformation capacities over time, and to analyze and predict movement toward transformational adaptation. We found that factors that best enable movement from incremental to transformational changes include unlocking capacity, or the organizational cultural value of in-depth learning/change, and a suite of contextual supports - new information, forward-looking collaborators, and stable funding sources - which require buy-in across levels of governance. We also found that, with organizational culture considered, experiencing disruption is not predictive of pursuing transformative adaptation. This suggests decision-making strategies for states, local jurisdictions, and utility managers to support climate adaptation and resilience in critical infrastructure, such as eliminating path-dependencies and silos, lowering thresholds for action, and leveraging networks to support moving toward transformation.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2025.124980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2025.124980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Margaret M. Kalcic; Rebecca Logsdon Muenich; Samantha Basile; Allison L. Steiner; +2 AuthorsMargaret M. Kalcic; Rebecca Logsdon Muenich; Samantha Basile; Allison L. Steiner; Christine Kirchhoff; Donald Scavia;pmid: 31244082
In the past 20 years, Lake Erie has experienced a resurgence of harmful algal blooms and hypoxia driven by increased nutrient loading from its agriculturally dominated watersheds. The increase in phosphorus loading, specifically the dissolved reactive portion, has been attributed to a combination of changing climate and agricultural management. While many management practices and strategies have been identified to reduce phosphorus loads, the impacts of future climate remain uncertain. This is particularly the case for the Great Lakes region because many global climate models do not accurately represent the land-lake interactions that govern regional climate. For this study, we used midcentury (2046-2065) climate projections from one global model and four regional dynamically downscaled models as drivers for the Soil and Water Assessment Tool configured for the Maumee River watershed, the source of almost 50% of Lake Erie's Western Basin phosphorus load. Our findings suggest that future warming may lead to less nutrient runoff due to increased evapotranspiration and decreased snowfall, despite projected moderate increases in intensity and overall amount of precipitation. Results highlight the benefits of considering multiple environmental drivers in determining the fate of nutrients in the environment and demonstrate a need to improve approaches for climate change assessment using watershed models.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b01274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b01274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IWA Publishing Funded by:NSF | CAREER: Humanizing Engine...NSF| CAREER: Humanizing Engineering and Resilience: An Integrated Research and Education Approach to Understand and Enhance Infrastructure ResilienceAuthors: Matthew A. Bizer; Christine J. Kirchhoff;doi: 10.2166/wst.2022.362
pmid: 36515193
Abstract Combined sewer overflows (CSOs) occur when untreated raw sewage mixed with rainwater, runoff, or snowmelt is released during or after a storm in any community with a combined sewer system (CSS). Climate change makes CSOs worse in many locales; as the frequency and severity of wet weather events increases, so do the frequency and volume of CSO events. CSOs pose risks to humans and the environment, and as such, CSS communities are under regulatory pressure to reduce CSOs. Yet, CSS communities lack the tools needed, such as performance indicators, to assess CSS performance. Using the city of Cumberland, Maryland as a case study, we use public data on CSOs and precipitation over a span of 16 years to identify a new critical rainfall intensity threshold that triggers likely CSO incidence, and a multiple linear regression model to predict CSO volume using rainfall event characteristics. Together, this indicator and modeling approach can help CSS communities assess the performance of their CSS over time, especially to evaluate the effectiveness of efforts to reduce CSOs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2022.362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2022.362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Rebecca Esselman; Daniel Brown; Christine J. Kirchhoff;AbstractAdapting to climate change requires the production and use of climate information to inform adaptation decisions. By facilitating sustained interaction between science producers, boundary organizations narrow the gap between science and decision-making and foster the co-production of actionable knowledge. While traditional boundary organization approaches focused on intense one-on-one interactions between producers and users increases usability, this approach requires significant time and resources. Forming “boundary chains”, linking complimentary boundary organizations together, may reduce those costs. In this paper, we use longitudinal observations of a boundary chain, interviews and surveys to explore: (1) how producer-user interactions increase understanding and information usability and (2) if and how efficiencies in climate information production, dissemination and use arise as a result of the boundary chain. We find that forming and sustaining an effective boundary chain requires not only interest, commitment and investment from every link in the chain but also a level of non-overlapping mutual dependency and complementary skill sets. In this case, GLISA’s strength in producing scientific information and their credibility as climate scientists and HRWC’s strengths in facilitation, connection with potential information users, and their recognition and reputation in the watershed add value to the boundary chain enabling the boundary chain to accomplish more with greater efficiency than if each organization in the chain tried to work independently. Finally, data show how the boundary chain increased efficiencies in educating potential users about the strengths and limitations of climate science and improving the production, dissemination, and use of climate information.
Climate Risk Managem... arrow_drop_down Climate Risk ManagementArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Climate Risk Managem... arrow_drop_down Climate Risk ManagementArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crm.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Australia, Australia, Germany, India, France, Netherlands, United States, United Kingdom, Netherlands, France, United States, Spain, Netherlands, France, Australia, IndiaPublisher:Springer Science and Business Media LLC Funded by:SSHRC, WT | Does household food biodi..., EC | IMBALANCE-P +4 projectsSSHRC ,WT| Does household food biodiversity protect adults against malnutrition and favour the resilience of Shawi Indigenous households to climate change related events? ,EC| IMBALANCE-P ,NSF| Collaborative Research: Workshop: Engaging students in science for international decision making: Colorado, October 2019/ Chile, December 2019 ,UKRI| "Environmental Policy and Development" Topic: Assessing progress in climate change adaptation at different levels ,ANR| STORISK ,UKRI| LSE Doctoral Training PartnershipKaty Davis; Indra D. Bhatt; Tara Chen; Nicholas Philip Simpson; Stephanie E. Austin; Christopher H. Trisos; Brian Pentz; Luckson Zvobgo; Jan Petzold; Jan Petzold; Avery Hill; Jordi Sardans; Nicole van Maanen; Leah Gichuki; Bianca van Bavel; Mariella Siña; Timo Leiter; Mia Wannewitz; Cristina A. Mullin; Cristina A. Mullin; Jan C. Minx; Aidan D. Farrell; Deepal Doshi; Sherilee L. Harper; Michael D. Morecroft; Jennifer Niemann; Adelle Thomas; Thelma Zulfawu Abu; Justice Issah Musah-Surugu; Justice Issah Musah-Surugu; Rachel Bezner Kerr; Stephanie L. Barr; Eranga K. Galappaththi; Eranga K. Galappaththi; Eranga K. Galappaththi; James D. Ford; Custodio Matavel; Philip Antwi-Agyei; Yuanyuan Shang; Yuanyuan Shang; Neal R. Haddaway; Neal R. Haddaway; Emily Baker; Marjolijn Haasnoot; Mohammad Aminur Rahman Shah; Zinta Zommers; Ivan Villaverde Canosa; Malcolm Araos; Gabrielle Wong-Parodi; Chandni Singh; Ingrid Arotoma-Rojas; Miriam Nielsen; Miriam Nielsen; Alyssa Gatt; Anuszka Mosurska; Carolyn A. F. Enquist; Julia B. Pazmino Murillo; Vhalinavho Khavhagali; Julia Pelaez Avila; Delphine Deryng; Hasti Trivedi; Giulia Scarpa; Eunice A Salubi; Caitlin Grady; Robbert Biesbroek; Lea Berrang-Ford; Alexandra Paige Fischer; Alexandra Harden; Gabriela Nagle Alverio; Neha Chauhan; Edmond Totin; Andrew Forbes; Shinny Thakur; Susan J. Elliott; Alexandre K. Magnan; Alexandre K. Magnan; Portia Adade Williams; Katharine J. Mach; Kripa Jagannathan; Kripa Jagannathan; Souha Ouni; Katherine E. Browne; Shaugn Coggins; Christine J. Kirchhoff; Warda Ajaz; Tanvi Agrawal; Carys Richards; Carys Richards; Emily Theokritoff; Lolita Shaila Safaee Chalkasra; Lolita Shaila Safaee Chalkasra; Josep Peñuelas; Tabea Lissner; Erin Coughlan de Perez; Erin Coughlan de Perez; Gina Marie Maskell; Max Callaghan; Roopam Shukla; Matthias Garschagen; Rebecca R. Hernandez; Garry Sotnik; Emily Duncan; Praveen Kumar; Praveen Kumar; Christa Anderson; Shuaib Lwasa; Nicola Ulibarri; Greeshma Hegde; Lam T. M. Huynh; Jiren Xu; Matthew Jurjonas; Matthew Jurjonas; Oliver Lilford; Donovan Campbell; Raquel Ruiz-Díaz; Tom Hawxwell; Tom Hawxwell; Patricia Nayna Schwerdtle; Patricia Nayna Schwerdtle; Patricia Nayna Schwerdtle; Kathryn Dana Sjostrom; Elisabeth A. Gilmore; Alexandra Lesnikowski; Carol Zavaleta-Cortijo; Carol Zavaleta-Cortijo; Sienna Templeman; Sienna Templeman; Idowu Ajibade; Nikita Charles Hamilton; Lynée L. Turek-Hankins; Asha Sitati; William Kakenmaster; Megan Lukas-Sithole; Diana Reckien; Abraham Marshall Nunbogu; A. R. Siders; Vasiliki I. Chalastani; Pratik Pokharel; Elphin Tom Joe; Joshua Mullenite; Alcade C Segnon; Alcade C Segnon; Kathryn Bowen; Kathryn Bowen; Kathryn Bowen; Steven Koller; Mark New; Mark New; Maarten van Aalst; Maarten van Aalst; Lindsay C. Stringer;handle: 10919/108066 , 10568/116150 , 11343/309955
Assessing global progress on human adaptation to climate change is an urgent priority. Although the literature on adaptation to climate change is rapidly expanding, little is known about the actual extent of implementation. We systematically screened >48,000 articles using machine learning methods and a global network of 126 researchers. Our synthesis of the resulting 1,682 articles presents a systematic and comprehensive global stocktake of implemented human adaptation to climate change. Documented adaptations were largely fragmented, local and incremental, with limited evidence of transformational adaptation and negligible evidence of risk reduction outcomes. We identify eight priorities for global adaptation research: assess the effectiveness of adaptation responses, enhance the understanding of limits to adaptation, enable individuals and civil society to adapt, include missing places, scholars and scholarship, understand private sector responses, improve methods for synthesizing different forms of evidence, assess the adaptation at different temperature thresholds, and improve the inclusion of timescale and the dynamics of 536 responses.
CORE arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/2kc9v3vfData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/116150Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABNature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01170-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 359 citations 359 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/2kc9v3vfData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/116150Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABNature Climate ChangeArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01170-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:NSF | CAREER: Humanizing Engine...NSF| CAREER: Humanizing Engineering and Resilience: An Integrated Research and Education Approach to Understand and Enhance Infrastructure ResilienceAuthors: Matthew A. Bizer; Christine J. Kirchhoff; Jack L. Segal; W.L. Patenaude;pmid: 40117929
As critical infrastructure systems consider whether and how to adapt and build resilience to climate variability and change, more research is needed to holistically explore the dynamics of resilience-building changes over time. We begin to fill this gap with a case study of the Rhode Island public wastewater sector. The Rhode Island Department of Environmental Management has invested significant funding, technical assistance, capacity building, and regulatory pressure to help publicly owned wastewater systems build resilience to climate challenges since 2010. To trace, assess, and understand the dynamics of resilience-building efforts over time, we interviewed wastewater utility and municipal personnel using event history calendars (EHCs). EHCs helped respondents recall details of relevant events, including potentially disruptive storms/incidents, and how they responded, including large- and small-scale adaptations, during the study period (2010-2023). We used EHCs to trace resilience and transformation capacities over time, and to analyze and predict movement toward transformational adaptation. We found that factors that best enable movement from incremental to transformational changes include unlocking capacity, or the organizational cultural value of in-depth learning/change, and a suite of contextual supports - new information, forward-looking collaborators, and stable funding sources - which require buy-in across levels of governance. We also found that, with organizational culture considered, experiencing disruption is not predictive of pursuing transformative adaptation. This suggests decision-making strategies for states, local jurisdictions, and utility managers to support climate adaptation and resilience in critical infrastructure, such as eliminating path-dependencies and silos, lowering thresholds for action, and leveraging networks to support moving toward transformation.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2025.124980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2025.124980&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Authors: Margaret M. Kalcic; Rebecca Logsdon Muenich; Samantha Basile; Allison L. Steiner; +2 AuthorsMargaret M. Kalcic; Rebecca Logsdon Muenich; Samantha Basile; Allison L. Steiner; Christine Kirchhoff; Donald Scavia;pmid: 31244082
In the past 20 years, Lake Erie has experienced a resurgence of harmful algal blooms and hypoxia driven by increased nutrient loading from its agriculturally dominated watersheds. The increase in phosphorus loading, specifically the dissolved reactive portion, has been attributed to a combination of changing climate and agricultural management. While many management practices and strategies have been identified to reduce phosphorus loads, the impacts of future climate remain uncertain. This is particularly the case for the Great Lakes region because many global climate models do not accurately represent the land-lake interactions that govern regional climate. For this study, we used midcentury (2046-2065) climate projections from one global model and four regional dynamically downscaled models as drivers for the Soil and Water Assessment Tool configured for the Maumee River watershed, the source of almost 50% of Lake Erie's Western Basin phosphorus load. Our findings suggest that future warming may lead to less nutrient runoff due to increased evapotranspiration and decreased snowfall, despite projected moderate increases in intensity and overall amount of precipitation. Results highlight the benefits of considering multiple environmental drivers in determining the fate of nutrients in the environment and demonstrate a need to improve approaches for climate change assessment using watershed models.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b01274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b01274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IWA Publishing Funded by:NSF | CAREER: Humanizing Engine...NSF| CAREER: Humanizing Engineering and Resilience: An Integrated Research and Education Approach to Understand and Enhance Infrastructure ResilienceAuthors: Matthew A. Bizer; Christine J. Kirchhoff;doi: 10.2166/wst.2022.362
pmid: 36515193
Abstract Combined sewer overflows (CSOs) occur when untreated raw sewage mixed with rainwater, runoff, or snowmelt is released during or after a storm in any community with a combined sewer system (CSS). Climate change makes CSOs worse in many locales; as the frequency and severity of wet weather events increases, so do the frequency and volume of CSO events. CSOs pose risks to humans and the environment, and as such, CSS communities are under regulatory pressure to reduce CSOs. Yet, CSS communities lack the tools needed, such as performance indicators, to assess CSS performance. Using the city of Cumberland, Maryland as a case study, we use public data on CSOs and precipitation over a span of 16 years to identify a new critical rainfall intensity threshold that triggers likely CSO incidence, and a multiple linear regression model to predict CSO volume using rainfall event characteristics. Together, this indicator and modeling approach can help CSS communities assess the performance of their CSS over time, especially to evaluate the effectiveness of efforts to reduce CSOs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2022.362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wst.2022.362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu