- home
- Advanced Search
Filters
Year range
-chevron_right GOOrganization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Sohan Singh Walia; Tamanpreet Kaur; Rajeev Kumar Gupta; Manzer H. Siddiqui; Md Atikur Rahman;doi: 10.3390/su15108254
The scarcity of fertilizers and their rising costs are significant barriers to crop production, as the current agricultural situation in India has shown. In maize–potato–onion cropping systems, the impact of various organic treatments on crop yields and soil parameters has shown that organic treatments increased maize, potato and onion yields compared to chemical treatment (recommended dose of fertilizers) alone. Treatments with applications of different organic sources, each equivalent to 1/3 of the recommended N, along with intercropping of soybeans in maize, radishes in potatoes and coriander in onions, gave the highest yield of maize crops, and significant positive yield trends were observed in four treatments (T1, T2, T4 and T6). Interestingly, all treatments showed a positive effect on potato and onion yields, clearly summarizing potatoes and onions as being more stable crops than maize. Further, the best soil characteristics, viz., bulk density and soil resistance under organic treatment, were lower than those found in integrated and chemical treatments. In contrast, the soil’s water-holding capacity, stable aggregate and infiltration rate followed a reverse trend. The treatment (T3), in which soybeans were grown as an inter-row crop in maize, radishes in potatoes and coriander in onions, showed the highest energy-use efficiency, energy output efficiency and energy productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15108254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15108254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Sohan Singh Walia; Subhash Babu; Roopinder Singh Gill; Tamanpreet Kaur; Noopur Kohima; Azad Singh Panwar; Dinesh Kumar Yadav; Meraj Alam Ansari; Natesan Ravishankar; Sanjeev Kumar; Karmjeet Kaur; Majhrool Hak Ansari;doi: 10.3390/su142114636
Achieving an economically feasible and environmentally robust model in agriculture while satisfying the expanding population’s food demands is a global challenge. Hence, a three-year (2014–2017) study was conducted at Punjab Agricultural University, Ludhiana to design environmentally clean, energy-efficient, and profitable cropping systems. Twelve cropping systems viz., rice-wheat (CS1), basmati rice-hayola (transplanted)-mung bean (CS2), basmati rice-radish-maize (CS3), maize-potato-maize (CS4), maize + turmeric-barley + linseed (CS5), maize + turmeric-wheat + linseed (CS6), maize + radish-wheat + linseed-mung bean (CS7), groundnut + pigeon pea (5:1)-wheat + sarson (9:1) (CS8), maize + black gram-pea (bed) + celery (furrows) (CS9),: maize + pigeon pea-chickpea (bed) + gobhi sarson (furrows) (CS10), maize (green cobs) + vegetable cowpea + dhaincha (Sesbania spp.)-chickpea + gobhi sarson (CS11) and sorghum + cowpea (fodder)-wheat + gobhi sarson (9:1) (CS12) were tested in a four-times-replicated randomized block design. CS11 had the maximum system productivity (28.57 Mg ha−1), production efficiency (78.27 Kg Day−1 ha−1), irrigation water use efficiency (2.38 kg m−3), system net returns (4413.3 US$ ha−1), and benefit to cost (B:C) ratio (2.83) over others. In comparison to the CS1 system, this cropping system required ~78% less irrigation water for a unit economic production. However, the cultivation of CS12 registered the highest energy use efficiency (49.06%), net energy returns (6.46 × 103 MJ ha⁻¹), and global warming potential (GWP) (Mg CO2 e ha−1) at spatial scale. Among all the intensified systems, CS11 had the lowest GHGI (0.29 kg CO2 e kg−1). Furthermore, cultivation of CS6 resulted in the maximum bacterial and actinomycetes population in the soil, while CS5 yielded the highest fungal count (23.8 × 103 cfu g−1 dry soil) in soil. Our study suggests that the cultivation of CS11 is a resource-efficient, economically viable, and environmentally clean production system and could be a potential alternative to rice-wheat systems for developing a green economy policy for agricultural development in the Indo-Gangetic Plains (IGP) of India.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Sohan Singh Walia; Tamanpreet Kaur; Rajeev Kumar Gupta; Manzer H. Siddiqui; Md Atikur Rahman;doi: 10.3390/su15108254
The scarcity of fertilizers and their rising costs are significant barriers to crop production, as the current agricultural situation in India has shown. In maize–potato–onion cropping systems, the impact of various organic treatments on crop yields and soil parameters has shown that organic treatments increased maize, potato and onion yields compared to chemical treatment (recommended dose of fertilizers) alone. Treatments with applications of different organic sources, each equivalent to 1/3 of the recommended N, along with intercropping of soybeans in maize, radishes in potatoes and coriander in onions, gave the highest yield of maize crops, and significant positive yield trends were observed in four treatments (T1, T2, T4 and T6). Interestingly, all treatments showed a positive effect on potato and onion yields, clearly summarizing potatoes and onions as being more stable crops than maize. Further, the best soil characteristics, viz., bulk density and soil resistance under organic treatment, were lower than those found in integrated and chemical treatments. In contrast, the soil’s water-holding capacity, stable aggregate and infiltration rate followed a reverse trend. The treatment (T3), in which soybeans were grown as an inter-row crop in maize, radishes in potatoes and coriander in onions, showed the highest energy-use efficiency, energy output efficiency and energy productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15108254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15108254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Sohan Singh Walia; Subhash Babu; Roopinder Singh Gill; Tamanpreet Kaur; Noopur Kohima; Azad Singh Panwar; Dinesh Kumar Yadav; Meraj Alam Ansari; Natesan Ravishankar; Sanjeev Kumar; Karmjeet Kaur; Majhrool Hak Ansari;doi: 10.3390/su142114636
Achieving an economically feasible and environmentally robust model in agriculture while satisfying the expanding population’s food demands is a global challenge. Hence, a three-year (2014–2017) study was conducted at Punjab Agricultural University, Ludhiana to design environmentally clean, energy-efficient, and profitable cropping systems. Twelve cropping systems viz., rice-wheat (CS1), basmati rice-hayola (transplanted)-mung bean (CS2), basmati rice-radish-maize (CS3), maize-potato-maize (CS4), maize + turmeric-barley + linseed (CS5), maize + turmeric-wheat + linseed (CS6), maize + radish-wheat + linseed-mung bean (CS7), groundnut + pigeon pea (5:1)-wheat + sarson (9:1) (CS8), maize + black gram-pea (bed) + celery (furrows) (CS9),: maize + pigeon pea-chickpea (bed) + gobhi sarson (furrows) (CS10), maize (green cobs) + vegetable cowpea + dhaincha (Sesbania spp.)-chickpea + gobhi sarson (CS11) and sorghum + cowpea (fodder)-wheat + gobhi sarson (9:1) (CS12) were tested in a four-times-replicated randomized block design. CS11 had the maximum system productivity (28.57 Mg ha−1), production efficiency (78.27 Kg Day−1 ha−1), irrigation water use efficiency (2.38 kg m−3), system net returns (4413.3 US$ ha−1), and benefit to cost (B:C) ratio (2.83) over others. In comparison to the CS1 system, this cropping system required ~78% less irrigation water for a unit economic production. However, the cultivation of CS12 registered the highest energy use efficiency (49.06%), net energy returns (6.46 × 103 MJ ha⁻¹), and global warming potential (GWP) (Mg CO2 e ha−1) at spatial scale. Among all the intensified systems, CS11 had the lowest GHGI (0.29 kg CO2 e kg−1). Furthermore, cultivation of CS6 resulted in the maximum bacterial and actinomycetes population in the soil, while CS5 yielded the highest fungal count (23.8 × 103 cfu g−1 dry soil) in soil. Our study suggests that the cultivation of CS11 is a resource-efficient, economically viable, and environmentally clean production system and could be a potential alternative to rice-wheat systems for developing a green economy policy for agricultural development in the Indo-Gangetic Plains (IGP) of India.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu