- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Rafael D. Gómez-Vásquez; Erika Arenas Castiblanco; Zulamita Zapata Benabithe; Antonio José Bula Silvera; +1 AuthorsRafael D. Gómez-Vásquez; Erika Arenas Castiblanco; Zulamita Zapata Benabithe; Antonio José Bula Silvera; Diego A. Camargo-Trillos;Abstract Corncob is one of the most abundant agro-industrial wastes globally. It represents a bioenergy feedstock of 1500–5500 million tons per year. The shape and size of the corncob are suitable for gasification without pretreatment (size reduction, densification, or drying) in a downdraft gasifier. However, its volatile content (about 80% DAF) can generate high tar content, representing a challenge to adopt this technology. In the present work, an evaluation of the effect of air-steam mixture and calcium carbonate CaCO3 as a promoter of both reforming and gasification reaction was carried out using corn cob without grains as raw material in a 40 kW gasifier. An analysis of variance of four experimental treatments was used to determine the main statistical and interactive effects on the syngas composition, hydrogen yield (yH2), syngas lower heating value (LHVgas), and cold gas efficiency (CGE). Results reveal the highest gasification performance achieved hydrogen production yields of 310 Nml/g, an LHVgas value of 4.8 MJ/Nm3, and cold gas efficiency of 59.18% with steam and CaCO3. Statistical analysis indicated that CaCO3 and steam influence H2 production by increasing 15.8% and 10.8%, respectively, with a CaCO3/biomass ratio of 1% (w/w) and a Steam/biomass ratio of 11% (w/w). Main statistical effects were found for CGE increase of 5% with the addition of steam, 10% with CaCO3, and synergy of 10% using CaCO3 and steam simultaneously.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Erika Arenas Castiblanco; Juan Henao Montoya; Gabriela Valencia Rincón; Zulamita Zapata-Benabithe; +2 AuthorsErika Arenas Castiblanco; Juan Henao Montoya; Gabriela Valencia Rincón; Zulamita Zapata-Benabithe; Rafael Gómez-Vásquez; Diego A. Camargo-Trillos;A new approach is proposed to obtain the kinetic parameters of biomass pyrolysis mixed with calcium catalyst. This approach involves the optimization of least squares (LS) with the Coats-Redfern integral method to avoid mathematical biases that may appear when applying the linear regression approach. The method was applied to the TGA data of pyrolysis of corn cob and corn cob mixed with 20 or 40 % by weight of CaO or CaCO3 under N2 atmosphere at temperatures between 25 and 700 °C. For raw cob, r2 reaches 0.997. For corn cob mixed with 20 % by weight of CaO or CaCO3, r2 reached 0.996-0.998, and for 40 % by weight, r2 reached 0.836-0.957. Applying this method, the activation energy (EA) value of the raw cob pyrolysis is 58.35 kJ mol-1, while the addition of CaO or CaCO3 increases the EA to 69.33 and 66.07 kJ mol-1, respectively. The method is simple to use and allows reliable values of kinetic parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2022.e10195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2022.e10195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: R. Gómez-Vásquez; E. Fernández-Ballesteros; D. Camargo-Trillos;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4000212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4000212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Rafael D. Gómez-Vásquez; Erika Arenas Castiblanco; Zulamita Zapata Benabithe; Antonio José Bula Silvera; +1 AuthorsRafael D. Gómez-Vásquez; Erika Arenas Castiblanco; Zulamita Zapata Benabithe; Antonio José Bula Silvera; Diego A. Camargo-Trillos;Abstract Corncob is one of the most abundant agro-industrial wastes globally. It represents a bioenergy feedstock of 1500–5500 million tons per year. The shape and size of the corncob are suitable for gasification without pretreatment (size reduction, densification, or drying) in a downdraft gasifier. However, its volatile content (about 80% DAF) can generate high tar content, representing a challenge to adopt this technology. In the present work, an evaluation of the effect of air-steam mixture and calcium carbonate CaCO3 as a promoter of both reforming and gasification reaction was carried out using corn cob without grains as raw material in a 40 kW gasifier. An analysis of variance of four experimental treatments was used to determine the main statistical and interactive effects on the syngas composition, hydrogen yield (yH2), syngas lower heating value (LHVgas), and cold gas efficiency (CGE). Results reveal the highest gasification performance achieved hydrogen production yields of 310 Nml/g, an LHVgas value of 4.8 MJ/Nm3, and cold gas efficiency of 59.18% with steam and CaCO3. Statistical analysis indicated that CaCO3 and steam influence H2 production by increasing 15.8% and 10.8%, respectively, with a CaCO3/biomass ratio of 1% (w/w) and a Steam/biomass ratio of 11% (w/w). Main statistical effects were found for CGE increase of 5% with the addition of steam, 10% with CaCO3, and synergy of 10% using CaCO3 and steam simultaneously.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Erika Arenas Castiblanco; Juan Henao Montoya; Gabriela Valencia Rincón; Zulamita Zapata-Benabithe; +2 AuthorsErika Arenas Castiblanco; Juan Henao Montoya; Gabriela Valencia Rincón; Zulamita Zapata-Benabithe; Rafael Gómez-Vásquez; Diego A. Camargo-Trillos;A new approach is proposed to obtain the kinetic parameters of biomass pyrolysis mixed with calcium catalyst. This approach involves the optimization of least squares (LS) with the Coats-Redfern integral method to avoid mathematical biases that may appear when applying the linear regression approach. The method was applied to the TGA data of pyrolysis of corn cob and corn cob mixed with 20 or 40 % by weight of CaO or CaCO3 under N2 atmosphere at temperatures between 25 and 700 °C. For raw cob, r2 reaches 0.997. For corn cob mixed with 20 % by weight of CaO or CaCO3, r2 reached 0.996-0.998, and for 40 % by weight, r2 reached 0.836-0.957. Applying this method, the activation energy (EA) value of the raw cob pyrolysis is 58.35 kJ mol-1, while the addition of CaO or CaCO3 increases the EA to 69.33 and 66.07 kJ mol-1, respectively. The method is simple to use and allows reliable values of kinetic parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2022.e10195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2022.e10195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: R. Gómez-Vásquez; E. Fernández-Ballesteros; D. Camargo-Trillos;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4000212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4000212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu