- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Dongri Shan; Di Wang; Dongmei He; Peng Zhang;doi: 10.3390/en17051230
In this paper, we describe a position sensorless vector control system for a permanent magnet synchronous motor (PMSM) for a lawnmower in order to solve the problems of inferior dynamic performance and insufficient load resistance in the control process of lawnmower motors. A speed–current double-closed-loop vector control strategy was adopted to control the motor speed; an extended Kalman filter (EKF) was constructed to track the motor rotor position. STM32F407 was selected as the main control chip to establish the hardware experimental platform, and the performance of the control system was evaluated. The experimental results demonstrate that the control system accurately regulates motor speed, has good dynamic response characteristics, and can maintain stability under various loads; therefore, it meets the performance requirements of lawnmower motors in practical operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Dongri Shan; Di Wang; Dongmei He; Peng Zhang;doi: 10.3390/en17051230
In this paper, we describe a position sensorless vector control system for a permanent magnet synchronous motor (PMSM) for a lawnmower in order to solve the problems of inferior dynamic performance and insufficient load resistance in the control process of lawnmower motors. A speed–current double-closed-loop vector control strategy was adopted to control the motor speed; an extended Kalman filter (EKF) was constructed to track the motor rotor position. STM32F407 was selected as the main control chip to establish the hardware experimental platform, and the performance of the control system was evaluated. The experimental results demonstrate that the control system accurately regulates motor speed, has good dynamic response characteristics, and can maintain stability under various loads; therefore, it meets the performance requirements of lawnmower motors in practical operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu