- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 ArgentinaPublisher:Wiley Priscila Vensaus; Rolando M. Caraballo; Emiliano Tritto; Cynthia C. Fernández; Paula C. Angelomé; M. Cecilia Fuertes; Federico J. Williams; Galo J. A. A. Soler‐Illia; Luis M. Baraldo;handle: 11336/220480
AbstractThe preparation of nanomaterials for energy applications such as intercalation batteries and materials that can act as substrates for water oxidation is a subject of major interest nowadays. In this work, we report the deposition of Prussian blue (PB) and its cobalt analogue (CoPBA) on mesoporous titania thin films (MTTF) using the successive ionic layer adsorption reaction (SILAR) technique under soft conditions. A bifunctional ligand, 1,10‐phenanthroline‐5,6‐dione (pd), was used to functionalize the titania surface and promote the growth of PB and CoPBA. The resulting PB@MTTF and CoPBA@MTTF nanocomposites were characterized using several techniques and it was determined that PB and CoPBA grow in a controlled and sequential manner, maintaining the mesoporous architecture. Both PB@MTTF and CoPBA@MTTF demonstrated very good electroactive properties, while CoPBA@MTTF exhibited water oxidation capabilities. The flexibility of this PBA@MTTF platform allows the incorporation of any labile transition metal ion or fragment into the structure of the coordination polymer embedded into a mesoporous matrix, opening the door for (photo)electrochemical devices and catalysts.
LAReferencia - Red F... arrow_drop_down Chemische BerichteArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ejic.202300576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Chemische BerichteArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ejic.202300576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 ArgentinaPublisher:Wiley Priscila Vensaus; Rolando M. Caraballo; Emiliano Tritto; Cynthia C. Fernández; Paula C. Angelomé; M. Cecilia Fuertes; Federico J. Williams; Galo J. A. A. Soler‐Illia; Luis M. Baraldo;handle: 11336/220480
AbstractThe preparation of nanomaterials for energy applications such as intercalation batteries and materials that can act as substrates for water oxidation is a subject of major interest nowadays. In this work, we report the deposition of Prussian blue (PB) and its cobalt analogue (CoPBA) on mesoporous titania thin films (MTTF) using the successive ionic layer adsorption reaction (SILAR) technique under soft conditions. A bifunctional ligand, 1,10‐phenanthroline‐5,6‐dione (pd), was used to functionalize the titania surface and promote the growth of PB and CoPBA. The resulting PB@MTTF and CoPBA@MTTF nanocomposites were characterized using several techniques and it was determined that PB and CoPBA grow in a controlled and sequential manner, maintaining the mesoporous architecture. Both PB@MTTF and CoPBA@MTTF demonstrated very good electroactive properties, while CoPBA@MTTF exhibited water oxidation capabilities. The flexibility of this PBA@MTTF platform allows the incorporation of any labile transition metal ion or fragment into the structure of the coordination polymer embedded into a mesoporous matrix, opening the door for (photo)electrochemical devices and catalysts.
LAReferencia - Red F... arrow_drop_down Chemische BerichteArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ejic.202300576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Chemische BerichteArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ejic.202300576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu