- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 FrancePublisher:Wiley Funded by:SNSF | Effects of Climate and it...SNSF| Effects of Climate and its Change on Phylogenetic, Functional and Species Diversity in Swiss Grasslands CommunitiesBrun, Philipp; Psomas, Achilleas; Ginzler, Christian; Thuiller, Wilfried; Zappa, Massimiliano; Zimmermann, Niklaus;AbstractThe combination of drought and heat affects forest ecosystems by deteriorating the health of trees, which can lead to large‐scale die‐offs with consequences on biodiversity, the carbon cycle, and wood production. It is thus crucial to understand how drought events affect tree health and which factors determine forest susceptibility and resilience. We analyze the response of Central European forests to the 2018 summer drought with 10 × 10 m satellite observations. By associating time‐series statistics of the Normalized Difference Vegetation Index (NDVI) with visually classified observations of early wilting, we show that the drought led to early leaf‐shedding across 21,500 ± 2,800 km2, in particular in central and eastern Germany and in the Czech Republic. High temperatures and low precipitation, especially in August, mostly explained these large‐scale patterns, with small‐ to medium‐sized trees, steep slopes, and shallow soils being important regional risk factors. Early wilting revealed a lasting impact on forest productivity, with affected trees showing reduced greenness in the following spring. Our approach reliably detects early wilting at the resolution of large individual crowns and links it to key environmental drivers. It provides a sound basis to monitor and forecast early‐wilting responses that may follow the droughts of the coming decades.
Global Change Biolog... arrow_drop_down Université Grenoble Alpes: HALArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Université Grenoble Alpes: HALArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 31 May 2024 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Learning unbiased habitat..., SNSF | FutureWeb, SNSF | FeedBaCks: Feedbacks betw...SNSF| Learning unbiased habitat suitability at scale with AI (deepHSM) ,SNSF| FutureWeb ,SNSF| FeedBaCks: Feedbacks between Biodiversity and ClimateNina van Tiel; Fabian Fopp; Philipp Brun; Johan van den Hoogen; Dirk Nikolaus Karger; Cecilia M. Casadei; Lisha Lyu; Devis Tuia; Niklaus E. Zimmermann; Thomas W. Crowther; Loïc Pellissier;AbstractThe conservation and restoration of forest ecosystems require detailed knowledge of the native plant compositions. Here, we map global forest tree composition and assess the impacts of historical forest cover loss and climate change on trees. The global occupancy of 10,590 tree species reveals complex taxonomic and phylogenetic gradients determining a local signature of tree lineage assembly. Species occupancy analyses indicate that historical forest loss has significantly restricted the potential suitable range of tree species in all forest biomes. Nevertheless, tropical moist and boreal forest biomes display the lowest level of range restriction and harbor extremely large ranged tree species, albeit with a stark contrast in richness and composition. Climate change simulations indicate that forest biomes are projected to differ in their response to climate change, with the highest predicted species loss in tropical dry and Mediterranean ecoregions. Our findings highlight the need for preserving the remaining large forest biomes while regenerating degraded forests in a way that provides resilience against climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48276-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48276-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 DenmarkPublisher:Wiley Funded by:EC | NACLIMEC| NACLIMAuthors: Philipp Brun; Thomas Kiørboe; Priscilla Licandro; Mark R. Payne;doi: 10.1111/gcb.13274
pmid: 27040720
AbstractStatistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real‐world are rare. Here, we use data from the Continuous Plankton Recorder program, one of the longest running and most extensive marine biological monitoring programs, to investigate the reliability of predicted plankton distributions. We apply three commonly used SDMs to 20 representative plankton species, including copepods, diatoms, and dinoflagellates, all found in the North Atlantic and adjacent seas. We fit the models to decadal subsets of the full (1958–2012) dataset, and then use them to predict both forward and backward in time, comparing the model predictions against the corresponding observations. The probability of correctly predicting presence was low, peaking at 0.5 for copepods, and model skill typically did not outperform a null model assuming distributions to be constant in time. The predicted prevalence increasingly differed from the observed prevalence for predictions with more distance in time from their training dataset. More detailed investigations based on four focal species revealed that strong spatial variations in skill exist, with the least skill at the edges of the distributions, where prevalence is lowest. Furthermore, the scores of traditional single‐value model performance metrics were contrasting and some implied overoptimistic conclusions about model skill. Plankton may be particularly challenging to model, due to its short life span and the dispersive effects of constant water movements on all spatial scales, however there are few other studies against which to compare these results. We conclude that rigorous model validation, including comparison against null models, is essential to assess the robustness of projections of marine planktonic species under climate change.
Global Change Biolog... arrow_drop_down Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyGlobal Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/gcb....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 28 Powered bymore_vert Global Change Biolog... arrow_drop_down Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyGlobal Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/gcb....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 05 Nov 2024 SwitzerlandPublisher:Wiley Adde, Antoine; Külling, Nathan; Rey, Pierre‐Louis; Fopp, Fabian; Brun, Philipp; Broennimann, Olivier; Lehmann, Anthony; Petitpierre, Blaise; Zimmermann, Niklaus E; Pellissier, Loïc; Altermatt, Florian; Guisan, Antoine;pmid: 39498875
ABSTRACTClimate projections for continental Europe indicate drier summers, increased annual precipitation, and less snowy winters, which are expected to cause shifts in species' distributions. Yet, most regions/countries currently lack comprehensive climate‐driven biodiversity projections across taxonomic groups, challenging effective conservation efforts. To address this gap, our study evaluated the potential effects of climate change on the biodiversity of an alpine country of Europe, Switzerland. We used a state‐of‐the art species distribution modeling approach and species occurrence data that covered the climatic conditions encountered across the full species' ranges to help limiting niche truncation. We quantified the relationship between baseline climate and the spatial distribution of 7291 species from 12 main taxonomic groups and projected future climate suitability for three 30‐year periods and two greenhouse gas concentration scenarios (RCP4.5 and 8.5). Our results indicated important effects of projected climate changes on species' climate suitability, with responses varying by the taxonomic and conservation status group. The percentage of species facing major changes in climate suitability was higher under RCP8.5 (68%) compared to RCP4.5 (66%). By the end of the century, decreases in climate suitability were projected for 3000 species under RCP8.5 and 1758 species under RCP4.5. The most affected groups under RCP8.5 were molluscs, algae, and amphibians, while it was molluscs, birds, and vascular plants under RCP4.5. Spatially, by 2070–2099, we projected an overall decrease in climate suitability for 39% of the cells in the study area under RCP8.5 and 10% under RCP4.5, while projecting an increase for 50% of the cells under RCP8.5 and 73% under RCP4.5. The most consistent geographical shifts were upward, southward, and eastward. We found that the coverage of high climate suitability cells by protected areas was expected to increase. Our models and maps provide guidance for spatial conservation planning by pointing out future climate‐suitable areas for biodiversity.
Global Change Biolog... arrow_drop_down Serveur académique lausannoisArticle . 2024License: CC BYData sources: Serveur académique lausannoisZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Serveur académique lausannoisArticle . 2024License: CC BYData sources: Serveur académique lausannoisZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | NACLIM, NSF | Graduate Research Fellows...EC| NACLIM ,NSF| Graduate Research Fellowship Program (GRFP)Philipp Brun; Karen Stamieszkin; Andre W. Visser; Priscilla Licandro; Mark R. Payne; Thomas Kiørboe;pmid: 30742109
Marine plankton have been conspicuously affected by recent climate change, responding with profound spatial relocations and shifts in the timing of their seasonal occurrence. These changes directly affect the global carbon cycle by altering the transport of organic material from the surface ocean to depth, with consequences that remain poorly understood. We investigated how distributional and abundance changes of copepods, the dominant group of zooplankton, have affected biogenic carbon cycling. We used trait-based, mechanistic models to estimate the magnitude of carbon transported downward through sinking faecal pellets, daily vertical migration and seasonal hibernation at depth. From such estimates for over 200,000 community observations in the northern North Atlantic we found carbon flux increased along the northwestern boundary of the study area and decreased in the open northern North Atlantic during the past 55 years. These changes in export were primarily associated with changes in copepod biomass, driven by shifting distributions of abundant, large-bodied species. Our findings highlight how recent climate change has affected downward carbon transport by altering copepod community structure and demonstrate how carbon fluxes through plankton communities can be mechanistically implemented in next-generation biogeochemical models with size-structured representations of zooplankton communities.
Nature Ecology & Evo... arrow_drop_down Online Research Database In TechnologyArticle . 2019Data sources: Online Research Database In TechnologyNature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0780-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Online Research Database In TechnologyArticle . 2019Data sources: Online Research Database In TechnologyNature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0780-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 27 Jan 2025Publisher:American Association for the Advancement of Science (AAAS) Liangzhi Chen; Philipp Brun; Pascal Buri; Simone Fatichi; Arthur Gessler; Michael James McCarthy; Francesca Pellicciotti; Benjamin Stocker; Dirk Nikolaus Karger;pmid: 39818908
Persistent multiyear drought (MYD) events pose a growing threat to nature and humans in a changing climate. We identified and inventoried global MYDs by detecting spatiotemporally contiguous climatic anomalies, showing that MYDs have become drier, hotter, and led to increasingly diminished vegetation greenness. The global terrestrial land affected by MYDs has increased at a rate of 49,279 ± 14,771 square kilometers per year from 1980 to 2018. Temperate grasslands have exhibited the greatest declines in vegetation greenness during MYDs, whereas boreal and tropical forests have had comparably minor responses. With MYDs becoming more common, this global quantitative inventory of the occurrence, severity, trend, and impact of MYDs provides an important benchmark for facilitating more effective and collaborative preparedness toward mitigation of and adaptation to such extreme events.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.ado4245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.ado4245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 FrancePublisher:Wiley Funded by:SNSF | Effects of Climate and it...SNSF| Effects of Climate and its Change on Phylogenetic, Functional and Species Diversity in Swiss Grasslands CommunitiesBrun, Philipp; Psomas, Achilleas; Ginzler, Christian; Thuiller, Wilfried; Zappa, Massimiliano; Zimmermann, Niklaus;AbstractThe combination of drought and heat affects forest ecosystems by deteriorating the health of trees, which can lead to large‐scale die‐offs with consequences on biodiversity, the carbon cycle, and wood production. It is thus crucial to understand how drought events affect tree health and which factors determine forest susceptibility and resilience. We analyze the response of Central European forests to the 2018 summer drought with 10 × 10 m satellite observations. By associating time‐series statistics of the Normalized Difference Vegetation Index (NDVI) with visually classified observations of early wilting, we show that the drought led to early leaf‐shedding across 21,500 ± 2,800 km2, in particular in central and eastern Germany and in the Czech Republic. High temperatures and low precipitation, especially in August, mostly explained these large‐scale patterns, with small‐ to medium‐sized trees, steep slopes, and shallow soils being important regional risk factors. Early wilting revealed a lasting impact on forest productivity, with affected trees showing reduced greenness in the following spring. Our approach reliably detects early wilting at the resolution of large individual crowns and links it to key environmental drivers. It provides a sound basis to monitor and forecast early‐wilting responses that may follow the droughts of the coming decades.
Global Change Biolog... arrow_drop_down Université Grenoble Alpes: HALArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Université Grenoble Alpes: HALArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 31 May 2024 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Learning unbiased habitat..., SNSF | FutureWeb, SNSF | FeedBaCks: Feedbacks betw...SNSF| Learning unbiased habitat suitability at scale with AI (deepHSM) ,SNSF| FutureWeb ,SNSF| FeedBaCks: Feedbacks between Biodiversity and ClimateNina van Tiel; Fabian Fopp; Philipp Brun; Johan van den Hoogen; Dirk Nikolaus Karger; Cecilia M. Casadei; Lisha Lyu; Devis Tuia; Niklaus E. Zimmermann; Thomas W. Crowther; Loïc Pellissier;AbstractThe conservation and restoration of forest ecosystems require detailed knowledge of the native plant compositions. Here, we map global forest tree composition and assess the impacts of historical forest cover loss and climate change on trees. The global occupancy of 10,590 tree species reveals complex taxonomic and phylogenetic gradients determining a local signature of tree lineage assembly. Species occupancy analyses indicate that historical forest loss has significantly restricted the potential suitable range of tree species in all forest biomes. Nevertheless, tropical moist and boreal forest biomes display the lowest level of range restriction and harbor extremely large ranged tree species, albeit with a stark contrast in richness and composition. Climate change simulations indicate that forest biomes are projected to differ in their response to climate change, with the highest predicted species loss in tropical dry and Mediterranean ecoregions. Our findings highlight the need for preserving the remaining large forest biomes while regenerating degraded forests in a way that provides resilience against climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48276-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-48276-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 DenmarkPublisher:Wiley Funded by:EC | NACLIMEC| NACLIMAuthors: Philipp Brun; Thomas Kiørboe; Priscilla Licandro; Mark R. Payne;doi: 10.1111/gcb.13274
pmid: 27040720
AbstractStatistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real‐world are rare. Here, we use data from the Continuous Plankton Recorder program, one of the longest running and most extensive marine biological monitoring programs, to investigate the reliability of predicted plankton distributions. We apply three commonly used SDMs to 20 representative plankton species, including copepods, diatoms, and dinoflagellates, all found in the North Atlantic and adjacent seas. We fit the models to decadal subsets of the full (1958–2012) dataset, and then use them to predict both forward and backward in time, comparing the model predictions against the corresponding observations. The probability of correctly predicting presence was low, peaking at 0.5 for copepods, and model skill typically did not outperform a null model assuming distributions to be constant in time. The predicted prevalence increasingly differed from the observed prevalence for predictions with more distance in time from their training dataset. More detailed investigations based on four focal species revealed that strong spatial variations in skill exist, with the least skill at the edges of the distributions, where prevalence is lowest. Furthermore, the scores of traditional single‐value model performance metrics were contrasting and some implied overoptimistic conclusions about model skill. Plankton may be particularly challenging to model, due to its short life span and the dispersive effects of constant water movements on all spatial scales, however there are few other studies against which to compare these results. We conclude that rigorous model validation, including comparison against null models, is essential to assess the robustness of projections of marine planktonic species under climate change.
Global Change Biolog... arrow_drop_down Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyGlobal Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/gcb....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 28 Powered bymore_vert Global Change Biolog... arrow_drop_down Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyGlobal Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/gcb....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 05 Nov 2024 SwitzerlandPublisher:Wiley Adde, Antoine; Külling, Nathan; Rey, Pierre‐Louis; Fopp, Fabian; Brun, Philipp; Broennimann, Olivier; Lehmann, Anthony; Petitpierre, Blaise; Zimmermann, Niklaus E; Pellissier, Loïc; Altermatt, Florian; Guisan, Antoine;pmid: 39498875
ABSTRACTClimate projections for continental Europe indicate drier summers, increased annual precipitation, and less snowy winters, which are expected to cause shifts in species' distributions. Yet, most regions/countries currently lack comprehensive climate‐driven biodiversity projections across taxonomic groups, challenging effective conservation efforts. To address this gap, our study evaluated the potential effects of climate change on the biodiversity of an alpine country of Europe, Switzerland. We used a state‐of‐the art species distribution modeling approach and species occurrence data that covered the climatic conditions encountered across the full species' ranges to help limiting niche truncation. We quantified the relationship between baseline climate and the spatial distribution of 7291 species from 12 main taxonomic groups and projected future climate suitability for three 30‐year periods and two greenhouse gas concentration scenarios (RCP4.5 and 8.5). Our results indicated important effects of projected climate changes on species' climate suitability, with responses varying by the taxonomic and conservation status group. The percentage of species facing major changes in climate suitability was higher under RCP8.5 (68%) compared to RCP4.5 (66%). By the end of the century, decreases in climate suitability were projected for 3000 species under RCP8.5 and 1758 species under RCP4.5. The most affected groups under RCP8.5 were molluscs, algae, and amphibians, while it was molluscs, birds, and vascular plants under RCP4.5. Spatially, by 2070–2099, we projected an overall decrease in climate suitability for 39% of the cells in the study area under RCP8.5 and 10% under RCP4.5, while projecting an increase for 50% of the cells under RCP8.5 and 73% under RCP4.5. The most consistent geographical shifts were upward, southward, and eastward. We found that the coverage of high climate suitability cells by protected areas was expected to increase. Our models and maps provide guidance for spatial conservation planning by pointing out future climate‐suitable areas for biodiversity.
Global Change Biolog... arrow_drop_down Serveur académique lausannoisArticle . 2024License: CC BYData sources: Serveur académique lausannoisZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Serveur académique lausannoisArticle . 2024License: CC BYData sources: Serveur académique lausannoisZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17557&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | NACLIM, NSF | Graduate Research Fellows...EC| NACLIM ,NSF| Graduate Research Fellowship Program (GRFP)Philipp Brun; Karen Stamieszkin; Andre W. Visser; Priscilla Licandro; Mark R. Payne; Thomas Kiørboe;pmid: 30742109
Marine plankton have been conspicuously affected by recent climate change, responding with profound spatial relocations and shifts in the timing of their seasonal occurrence. These changes directly affect the global carbon cycle by altering the transport of organic material from the surface ocean to depth, with consequences that remain poorly understood. We investigated how distributional and abundance changes of copepods, the dominant group of zooplankton, have affected biogenic carbon cycling. We used trait-based, mechanistic models to estimate the magnitude of carbon transported downward through sinking faecal pellets, daily vertical migration and seasonal hibernation at depth. From such estimates for over 200,000 community observations in the northern North Atlantic we found carbon flux increased along the northwestern boundary of the study area and decreased in the open northern North Atlantic during the past 55 years. These changes in export were primarily associated with changes in copepod biomass, driven by shifting distributions of abundant, large-bodied species. Our findings highlight how recent climate change has affected downward carbon transport by altering copepod community structure and demonstrate how carbon fluxes through plankton communities can be mechanistically implemented in next-generation biogeochemical models with size-structured representations of zooplankton communities.
Nature Ecology & Evo... arrow_drop_down Online Research Database In TechnologyArticle . 2019Data sources: Online Research Database In TechnologyNature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0780-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Online Research Database In TechnologyArticle . 2019Data sources: Online Research Database In TechnologyNature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0780-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 27 Jan 2025Publisher:American Association for the Advancement of Science (AAAS) Liangzhi Chen; Philipp Brun; Pascal Buri; Simone Fatichi; Arthur Gessler; Michael James McCarthy; Francesca Pellicciotti; Benjamin Stocker; Dirk Nikolaus Karger;pmid: 39818908
Persistent multiyear drought (MYD) events pose a growing threat to nature and humans in a changing climate. We identified and inventoried global MYDs by detecting spatiotemporally contiguous climatic anomalies, showing that MYDs have become drier, hotter, and led to increasingly diminished vegetation greenness. The global terrestrial land affected by MYDs has increased at a rate of 49,279 ± 14,771 square kilometers per year from 1980 to 2018. Temperate grasslands have exhibited the greatest declines in vegetation greenness during MYDs, whereas boreal and tropical forests have had comparably minor responses. With MYDs becoming more common, this global quantitative inventory of the occurrence, severity, trend, and impact of MYDs provides an important benchmark for facilitating more effective and collaborative preparedness toward mitigation of and adaptation to such extreme events.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.ado4245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.ado4245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu