- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Eneko Unamuno; Jon Andoni Barrena;Microgrids are envisioned as one of the most suitable alternatives for the integration of distributed generation units in the utility grid, as they efficiently combine generation, energy storage and loads in the same distribution network. In this context, hybrid ac/dc microgrids are arising as an interesting approach as they combine the advantages of ac and dc networks and do not require excessive modifications in the distribution network. However, they require more complex control strategies as they need to control the ac and dc networks and the interface power converter simultaneously. This paper identifies and analyses the control strategies that can be implemented in hybrid microgrids for an adequate power management in grid-tied and islanded modes of operation. The review is focused on hierarchical controls as they are the most extended approach in the literature. A classification has been elaborated, which covers the three main levels of hierarchical control strategies (primary, secondary and tertiary). Each of the levels has been independently studied in order to provide a comprehensive analysis of the alternatives found in the literature. The future trends related to this topic show that a higher research effort is required regarding the control of the interface device and the ancillary services that the management strategy must provide—e.g. blackstart, transition between islanded and grid-connected modes of operation, interconnection of microgrids, etc.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARenewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 199 citations 199 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 148visibility views 148 download downloads 299 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARenewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | iSTORMYEC| iSTORMYHakan Polat; Eneko Unamuno; David Cabezuelo; Thomas Geury; Omar Hegazy;In this paper, a smart machine-learning-based energy management system (MLBEMS) is developed for a hybrid energy storage system (HESS). This HBESS consists of batteries with high-energy (HE) and high-power (HP) characteristics, to provide grid-supporting services. The aim of the MLBEMS is to improve the overall battery lifetime and achieve state-of-charge (SoC) balancing for two different use cases (UC). UC1 involves enhanced frequency regulation for the Pan-European grid, while UC2 pertains to an electric vehicle (EV) charging station with photovoltaic (PV) generation. The designed MLBEMS is compared with a rule-based energy management system (RBEMS) from the literature with similar use cases. To ensure optimal power sharing between the battery modules, an optimization model is created using real battery aging data. Using a genetic algorithm, optimal power sharing is achieved for various initial SoC conditions. The generated dataset is subsequently utilized to train a machine-learning regression model, and the resulting prediction function is imported into MATLAB/Simulink. In UC1, MLBEMS achieved a 39.3% better SoC balancing compared to RBEMS, along with 36.5% and 22.6% higher battery lifetimes for HE and HP batteries, respectively. Similarly, for UC2, MLBEMS achieved a 68.5% improvement in SoC balancing, along with 53.6% and 45.8% higher battery lifetimes for HE and HP batteries, respectively.
IEEE Access arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3381864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Access arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3381864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | iSTORMYEC| iSTORMYSerrano-Jiménez, D.; Unamuno, E.; Gil-de-Muro, A.; Aragon, D.A.; Ceballos, S.; Barrena, J.A.;Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectric Power Systems ResearchArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectric Power Systems ResearchArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Julen Paniagua; Eneko Unamuno; Jon Andoni Barrena;Electric grids are undergoing several changes, mostly driven by the replacement of classical highly-inertial generators by converter-interfaced generation and storage systems. This entails the reduction of inherent inertia levels and might lead to instability issues. In a future scenario formed by grids of different natures and characteristics, power electronic converters will play a key role on grid tying applications. These converters are known as interlinking converters (ICs), and they enable total control over the power flow between interconnected grids. Therefore, they are envisioned to take part not only tying hybrid ac/dc systems but also in ac/ac connections. This paper presents a novel control strategy for ICs named dual inertiaemulation (DIE), that improves the dynamic response of tied grids by emulating inertia at both sides of the converter, and which can be employed at any IC regardless of the interconnected grid type (ac or dc). The proposed control is tested by means of time-domain simulations of WSCC 9-bus and IEEE 14-bus benchmark systems. The obtained results demonstrate that the proposed technique increases the equivalent inertial response of the interconnected grids, hence reducing frequency oscillations and the rate of change of frequency (RoCoF), and improving the frequency nadir.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3078839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 173visibility views 173 download downloads 155 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3078839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: D. Serrano-Jiménez; S. Castano-Solís; E. Unamuno; J.A. Barrena;International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Eneko Unamuno; Jon Andoni Barrena;Microgrids have been widely studied in the literature as a possible approach for the integration of distributed energy sources with energy storage systems in the electric network. Until now the most used configuration has been the ac microgrid, but dc-based microgrids are gaining interest due to the advantages they provide over their counterpart (no reactive power, no synchronization, increasing number of dc devices, etc.). Therefore, hybrid ac/dc microgrids are raising as an optimal approach as they combine the main advantages of ac and dc microgrids. This paper reviews the most interesting topologies of hybrid ac/dc microgrids based on the interconnection of the ac and dc networks and the conventional power network. After performing a description and analysis of each configuration, a comparative evaluation has been performed to highlight the most important features of each one. The future trends identified during the study also show that several features such as the scalability, modeling or design require further research towards the integration of hybrid microgrids in the power network.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARenewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 296 citations 296 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 128visibility views 128 download downloads 310 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARenewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Ander Ordono; Eneko Unamuno; Jon Andoni Barrena; Julen Paniagua;Abstract Classical power systems, which are typically structured in top-down topologies, are gradually evolving towards more decentralized systems comprised by clusters of smart subgrids to cope with the increasing penetration of distributed generation, energy storage systems and controllable loads. These clusters will increase the overall reliability, optimize resource usage and reduce investments in back-up systems. However, tying subgrids via passive devices (tie lines or power transformers) poses certain problems from the point of view of modularity and controllability. They also limit the connection capability of subgrids, as it is expected that systems with different voltage natures (ac and dc) will coexist in the future network. In this context, interlinking converters (IC) have emerged as a universal approach for the interconnection of such subgrids regardless of their characteristics. These power converters not only provide power flow control, but they also improve the power quality of networks through different ancillary services. Therefore, ICs are expected to be the energy routers of the future, smartly connecting and managing the interaction among grids. In the literature several topologies and control techniques have been proposed for this type of converters to transfer power between grids and provide support under contingencies. However, there are no classifications from the point of view of the participation of ICs in the primary regulation of the power system. The aim of this paper is to 1) identify the main characteristics of ICs compared to conventional interconnections based on passive devices, 2) review the most usual IC topologies depending on the nature of the grids they are interconnecting (ac-ac, ac-dc or dc-dc) and 3) analyse and compare the different control approaches for the primary regulation via ICs and propose a general classification based on this analysis regardless of the number of conversion power stages of the IC and the nature and characteristics of tied grids.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2019.03.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2019.03.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:IEEE Authors: Julen Paniagua; Eneko Unamuno; Jon Andoni Barrena;During the last decades the number of microgrids and their research have increased notably, as they offer a high versatility for the integration of distributed generation (DG) units and renewable energies. Among the different types of microgrids, dc systems are becoming more popular due to their advantages over conventional ac systems. However, their control techniques differ from the ones employed at ac networks, and depending on the device type-either generation, storage systems or loads-alternative control techniques need to be developed. Therefore, in this paper an experimental dc platform is developed with the aim of testing and evaluating these kind of control strategies. This test bench consists of a bidirectional four switch buck-boost converter together with a TMS320F28335 DSP for the implementation of the control strategy on each power converter. The proposed platform is suitable for integrating these systems at a 48 V dc bus and facilitates the evaluation of a wide range of control strategies as they are implemented in the Matlab/Simulink ® environment. In this case, the validation of the experimental platform has been carried out by implementing a virtual-impedance-based control technique. The experimental results included in the paper corroborate the suitability of the platform for the evaluation of control techniques for dc microgrids.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ecmsm.2017.7945872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 135visibility views 135 download downloads 112 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ecmsm.2017.7945872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Markel Zubiaga; Alain Sanchez-Ruiz; Eneko Olea; Eneko Unamuno; Aitor Bilbao; Joseba Arza;doi: 10.3390/en13174314
It is getting more common every day to install inverters that offer several grid support services in parallel. As these services are provided, a simultaneous need arises to know the combined limit of the inverter for those services. In the present paper, operational limits are addressed based on a utility scale for a real inverter scenario with an energy storage system (ESS) (1.5 MW). The paper begins by explaining how active and reactive power limits are calculated, illustrating the PQ maps depending on the converter rated current and voltage. Then, the effect of the negative sequence injection, the phase shift of compensated harmonics and the transformer de-rating are introduced step-by-step. Finally, inverter limits for active filter applications are summarized, to finally estimate active and reactive power limits along with the harmonic current injection for some example cases. The results show that while the phase shift of the injected negative sequence has a significant effect in the available inverter current, this is not the case for the phase shift of injected harmonics. However, the amplitude of the injected negative sequence and harmonics will directly impact the power capabilities of the inverter and therefore, depending on the grid-side voltage, it might be interesting to design an output transformer with a different de-rating factor to increase the power capabilities.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/17/4314/pdfData sources: Multidisciplinary Digital Publishing InstituteARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13174314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/17/4314/pdfData sources: Multidisciplinary Digital Publishing InstituteARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13174314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Journal , Other literature type 2016Publisher:IEEE Authors: Eneko Unamuno; Jon Barrena;Microgrid frequency and voltage regulation is a challenging task, as classical generators with rotational inertia are usually replaced by converter-interfaced systems that inherently do not provide any inertial response. The aim of this paper is to analyse and compare autonomous primary control techniques for alternating current (AC) and direct current (DC) microgrids that improve this transient behaviour. In this context, a virtual synchronous machine (VSM) technique is investigated for AC microgrids, and its behaviour for different values of emulated inertia and droop slopes is tested. Regarding DC microgrids, a virtual-impedance-based algorithm inspired by the operation concept of VSMs is proposed. The results demonstrate that the proposed strategy can be configured to have an analogous behaviour to VSM techniques by varying the control parameters of the integrated virtual-impedances. This means that the steady-state and transient behaviour of converters employing these strategies can be configured independently. As shown in the simulations, this is an interesting feature that could be, for instance, employed for the integration of different dynamic generation or storage systems, such as batteries or supercapacitors.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/91/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/eeeic.2016.7555729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 156visibility views 156 download downloads 121 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/91/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/eeeic.2016.7555729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Eneko Unamuno; Jon Andoni Barrena;Microgrids are envisioned as one of the most suitable alternatives for the integration of distributed generation units in the utility grid, as they efficiently combine generation, energy storage and loads in the same distribution network. In this context, hybrid ac/dc microgrids are arising as an interesting approach as they combine the advantages of ac and dc networks and do not require excessive modifications in the distribution network. However, they require more complex control strategies as they need to control the ac and dc networks and the interface power converter simultaneously. This paper identifies and analyses the control strategies that can be implemented in hybrid microgrids for an adequate power management in grid-tied and islanded modes of operation. The review is focused on hierarchical controls as they are the most extended approach in the literature. A classification has been elaborated, which covers the three main levels of hierarchical control strategies (primary, secondary and tertiary). Each of the levels has been independently studied in order to provide a comprehensive analysis of the alternatives found in the literature. The future trends related to this topic show that a higher research effort is required regarding the control of the interface device and the ancillary services that the management strategy must provide—e.g. blackstart, transition between islanded and grid-connected modes of operation, interconnection of microgrids, etc.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARenewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 199 citations 199 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 148visibility views 148 download downloads 299 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARenewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | iSTORMYEC| iSTORMYHakan Polat; Eneko Unamuno; David Cabezuelo; Thomas Geury; Omar Hegazy;In this paper, a smart machine-learning-based energy management system (MLBEMS) is developed for a hybrid energy storage system (HESS). This HBESS consists of batteries with high-energy (HE) and high-power (HP) characteristics, to provide grid-supporting services. The aim of the MLBEMS is to improve the overall battery lifetime and achieve state-of-charge (SoC) balancing for two different use cases (UC). UC1 involves enhanced frequency regulation for the Pan-European grid, while UC2 pertains to an electric vehicle (EV) charging station with photovoltaic (PV) generation. The designed MLBEMS is compared with a rule-based energy management system (RBEMS) from the literature with similar use cases. To ensure optimal power sharing between the battery modules, an optimization model is created using real battery aging data. Using a genetic algorithm, optimal power sharing is achieved for various initial SoC conditions. The generated dataset is subsequently utilized to train a machine-learning regression model, and the resulting prediction function is imported into MATLAB/Simulink. In UC1, MLBEMS achieved a 39.3% better SoC balancing compared to RBEMS, along with 36.5% and 22.6% higher battery lifetimes for HE and HP batteries, respectively. Similarly, for UC2, MLBEMS achieved a 68.5% improvement in SoC balancing, along with 53.6% and 45.8% higher battery lifetimes for HE and HP batteries, respectively.
IEEE Access arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3381864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Access arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2024.3381864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | iSTORMYEC| iSTORMYSerrano-Jiménez, D.; Unamuno, E.; Gil-de-Muro, A.; Aragon, D.A.; Ceballos, S.; Barrena, J.A.;Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectric Power Systems ResearchArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectric Power Systems ResearchArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2022.108115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Julen Paniagua; Eneko Unamuno; Jon Andoni Barrena;Electric grids are undergoing several changes, mostly driven by the replacement of classical highly-inertial generators by converter-interfaced generation and storage systems. This entails the reduction of inherent inertia levels and might lead to instability issues. In a future scenario formed by grids of different natures and characteristics, power electronic converters will play a key role on grid tying applications. These converters are known as interlinking converters (ICs), and they enable total control over the power flow between interconnected grids. Therefore, they are envisioned to take part not only tying hybrid ac/dc systems but also in ac/ac connections. This paper presents a novel control strategy for ICs named dual inertiaemulation (DIE), that improves the dynamic response of tied grids by emulating inertia at both sides of the converter, and which can be employed at any IC regardless of the interconnected grid type (ac or dc). The proposed control is tested by means of time-domain simulations of WSCC 9-bus and IEEE 14-bus benchmark systems. The obtained results demonstrate that the proposed technique increases the equivalent inertial response of the interconnected grids, hence reducing frequency oscillations and the rate of change of frequency (RoCoF), and improving the frequency nadir.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3078839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 173visibility views 173 download downloads 155 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Transactions on Smart GridArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3078839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: D. Serrano-Jiménez; S. Castano-Solís; E. Unamuno; J.A. Barrena;International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Eneko Unamuno; Jon Andoni Barrena;Microgrids have been widely studied in the literature as a possible approach for the integration of distributed energy sources with energy storage systems in the electric network. Until now the most used configuration has been the ac microgrid, but dc-based microgrids are gaining interest due to the advantages they provide over their counterpart (no reactive power, no synchronization, increasing number of dc devices, etc.). Therefore, hybrid ac/dc microgrids are raising as an optimal approach as they combine the main advantages of ac and dc microgrids. This paper reviews the most interesting topologies of hybrid ac/dc microgrids based on the interconnection of the ac and dc networks and the conventional power network. After performing a description and analysis of each configuration, a comparative evaluation has been performed to highlight the most important features of each one. The future trends identified during the study also show that several features such as the scalability, modeling or design require further research towards the integration of hybrid microgrids in the power network.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARenewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 296 citations 296 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 128visibility views 128 download downloads 310 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARenewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Ander Ordono; Eneko Unamuno; Jon Andoni Barrena; Julen Paniagua;Abstract Classical power systems, which are typically structured in top-down topologies, are gradually evolving towards more decentralized systems comprised by clusters of smart subgrids to cope with the increasing penetration of distributed generation, energy storage systems and controllable loads. These clusters will increase the overall reliability, optimize resource usage and reduce investments in back-up systems. However, tying subgrids via passive devices (tie lines or power transformers) poses certain problems from the point of view of modularity and controllability. They also limit the connection capability of subgrids, as it is expected that systems with different voltage natures (ac and dc) will coexist in the future network. In this context, interlinking converters (IC) have emerged as a universal approach for the interconnection of such subgrids regardless of their characteristics. These power converters not only provide power flow control, but they also improve the power quality of networks through different ancillary services. Therefore, ICs are expected to be the energy routers of the future, smartly connecting and managing the interaction among grids. In the literature several topologies and control techniques have been proposed for this type of converters to transfer power between grids and provide support under contingencies. However, there are no classifications from the point of view of the participation of ICs in the primary regulation of the power system. The aim of this paper is to 1) identify the main characteristics of ICs compared to conventional interconnections based on passive devices, 2) review the most usual IC topologies depending on the nature of the grids they are interconnecting (ac-ac, ac-dc or dc-dc) and 3) analyse and compare the different control approaches for the primary regulation via ICs and propose a general classification based on this analysis regardless of the number of conversion power stages of the IC and the nature and characteristics of tied grids.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2019.03.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2019.03.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:IEEE Authors: Julen Paniagua; Eneko Unamuno; Jon Andoni Barrena;During the last decades the number of microgrids and their research have increased notably, as they offer a high versatility for the integration of distributed generation (DG) units and renewable energies. Among the different types of microgrids, dc systems are becoming more popular due to their advantages over conventional ac systems. However, their control techniques differ from the ones employed at ac networks, and depending on the device type-either generation, storage systems or loads-alternative control techniques need to be developed. Therefore, in this paper an experimental dc platform is developed with the aim of testing and evaluating these kind of control strategies. This test bench consists of a bidirectional four switch buck-boost converter together with a TMS320F28335 DSP for the implementation of the control strategy on each power converter. The proposed platform is suitable for integrating these systems at a 48 V dc bus and facilitates the evaluation of a wide range of control strategies as they are implemented in the Matlab/Simulink ® environment. In this case, the validation of the experimental platform has been carried out by implementing a virtual-impedance-based control technique. The experimental results included in the paper corroborate the suitability of the platform for the evaluation of control techniques for dc microgrids.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ecmsm.2017.7945872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 135visibility views 135 download downloads 112 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ecmsm.2017.7945872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Markel Zubiaga; Alain Sanchez-Ruiz; Eneko Olea; Eneko Unamuno; Aitor Bilbao; Joseba Arza;doi: 10.3390/en13174314
It is getting more common every day to install inverters that offer several grid support services in parallel. As these services are provided, a simultaneous need arises to know the combined limit of the inverter for those services. In the present paper, operational limits are addressed based on a utility scale for a real inverter scenario with an energy storage system (ESS) (1.5 MW). The paper begins by explaining how active and reactive power limits are calculated, illustrating the PQ maps depending on the converter rated current and voltage. Then, the effect of the negative sequence injection, the phase shift of compensated harmonics and the transformer de-rating are introduced step-by-step. Finally, inverter limits for active filter applications are summarized, to finally estimate active and reactive power limits along with the harmonic current injection for some example cases. The results show that while the phase shift of the injected negative sequence has a significant effect in the available inverter current, this is not the case for the phase shift of injected harmonics. However, the amplitude of the injected negative sequence and harmonics will directly impact the power capabilities of the inverter and therefore, depending on the grid-side voltage, it might be interesting to design an output transformer with a different de-rating factor to increase the power capabilities.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/17/4314/pdfData sources: Multidisciplinary Digital Publishing InstituteARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13174314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/17/4314/pdfData sources: Multidisciplinary Digital Publishing InstituteARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2020Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13174314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Journal , Other literature type 2016Publisher:IEEE Authors: Eneko Unamuno; Jon Barrena;Microgrid frequency and voltage regulation is a challenging task, as classical generators with rotational inertia are usually replaced by converter-interfaced systems that inherently do not provide any inertial response. The aim of this paper is to analyse and compare autonomous primary control techniques for alternating current (AC) and direct current (DC) microgrids that improve this transient behaviour. In this context, a virtual synchronous machine (VSM) technique is investigated for AC microgrids, and its behaviour for different values of emulated inertia and droop slopes is tested. Regarding DC microgrids, a virtual-impedance-based algorithm inspired by the operation concept of VSMs is proposed. The results demonstrate that the proposed strategy can be configured to have an analogous behaviour to VSM techniques by varying the control parameters of the integrated virtual-impedances. This means that the steady-state and transient behaviour of converters employing these strategies can be configured independently. As shown in the simulations, this is an interesting feature that could be, for instance, employed for the integration of different dynamic generation or storage systems, such as batteries or supercapacitors.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/91/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/eeeic.2016.7555729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 156visibility views 156 download downloads 121 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/91/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/eeeic.2016.7555729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu