- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, GermanyPublisher:Proceedings of the National Academy of Sciences Authors: Bradford, Mark A.; Wood, Stephen A.; Bardgett, Richard D.; Black, Helaina I. J.; +7 AuthorsBradford, Mark A.; Wood, Stephen A.; Bardgett, Richard D.; Black, Helaina I. J.; Bonkowski, Michael; Eggers, Till; Grayston, Susan J.; Kandeler, Ellen; Manning, Peter; Setala, Heikki; Jones, T. Hefin;Significance Ecosystem functioning is more strongly affected by biodiversity loss when multiple functions are considered because different species affect different functions. To quantify these biodiversity-functioning relationships, the emerging multifunctionality framework advocates calculation of indices that aggregate responses of individual functions. Data aggregation, however, is notorious for providing misleading information by obscuring true relationships between explanatory and response variables. We test the ability of common multifunctionality indices to reveal effects on key ecosystem functions of changes in soil communities. The multifunctionality indices all decrease with soil animal loss, but the responses of individual functions diverge markedly from these aggregated metrics. Application of the multifunctionality framework for landscape provision of multiple ecosystem services should therefore emphasize understanding relationships between communities and individual functions.
Proceedings of the N... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional RepositoryProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1413707111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 174 citations 174 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional RepositoryProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1413707111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United StatesPublisher:Elsevier BV Authors: Institute of Soil Science, University of Hohenheim, Emil Wolff Str. 27, D-70599 Stuttgart, Germany ( host institution ); Kandeler, Ellen; Mosier, Arvin R.; Morgan, Jack A.; +4 AuthorsInstitute of Soil Science, University of Hohenheim, Emil Wolff Str. 27, D-70599 Stuttgart, Germany ( host institution ); Kandeler, Ellen; Mosier, Arvin R.; Morgan, Jack A.; Milchunas, Daniel G.; King, Jennifer Y.; Rudolph, Sabine; Tscherko, Dagmar;Using open-top chambers (OTC) on the shortgrass steppe in northern Colorado, changes of microbial community composition were followed over the latter 3 years of a 5-year study of elevated atmospheric CO2 as well as during 12 months after CO2 amendment ended. The experiment was composed of nine experimental plots: three chambered plots maintained at ambient CO2 levels of 360±20 μmol mol−1 (ambient treatment), three chambered plots maintained at 720±20 μmol mol−1 CO2 (elevated treatment) and three unchambered plots. The abundance of fungal phospholipid fatty acids (PLFAs) shifted in the shortgrass steppe under the influence of elevation of CO2 over the period of 3 years. Whereas the content of the fungal signature molecule (18:2ω6) was similar in soils of the ambient and elevated treatments in the third year of the experiment, CO2 treatment increased the content of 18:2ω6 by around 60% during the two subsequent years. The shift of microbial community composition towards a more fungal dominated community was likely due to slowly changing substrate quality; plant community forage quality declined under elevated CO2 because of a decline of N in all tested species as well as shift in species composition towards greater abundance of the low forage quality species (Stipa comata). In the year after which CO2 enrichment had ceased, abundances of fungal and bacterial PLFAs in the post-CO2 treatment plots shifted slowly back towards the control plots. Therefore, quantity and quality of available substrates had not changed sufficiently to shift the microbial community permanently to a fungal dominated community. We conclude from PLFA composition of soil microorganisms during the CO2 elevation experiment and during the subsequent year after cessation of CO2 treatment that a shift towards a fungal dominated system under higher CO2 concentrations may slow down C cycling in soils and therefore enhance C sequestration in the shortgrass steppe in future CO2-enriched atmospheres.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2008License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00509356/00001Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2007.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2008License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00509356/00001Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2007.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Ellen Kandeler; Petra Högy; Sven Marhan; Andreas Fangmeier; Christian Poll;pmid: 23194550
Spring barley was grown in a field experiment under moderately elevated soil temperature and changed summer precipitation (amount and frequency). Elevated temperature affected the performance and grain quality characteristics more significant than changes in rainfall. Except for the decrease in thousand grain weight, warming had no impacts on aboveground biomass and grain yield traits. In grains, several proteinogenic amino acids concentrations were increased, whereas their composition was only slightly altered. Concentration and yield of total protein remained unaffected under warming. The concentrations of total non-structural carbohydrates, starch, fructose and raffinose were lower in plants grown at high temperatures, whereas maltose was higher. Crude fibre remained unaffected by warming, whereas concentrations of lipids and aluminium were reduced. Manipulation of precipitation only marginally affected barley grains: amount reduction increased the concentrations of several minerals (sodium, copper) and amino acids (leucine). The projected climate changes may most likely affect grain quality traits of interest for different markets and utilisation requirements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foodchem.2012.09.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu104 citations 104 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foodchem.2012.09.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Ellen Kandeler; Verónica Asensio; Emma F. Covelo;pmid: 23584036
Mine soils at the depleted copper mine in Touro (Northwest Spain) are physico-chemically degraded and polluted by chromium and copper. To increase the quality of these soils, some areas at this mine have been vegetated with eucalyptus or pines, amended with sludges, or received both treatments. Four sites were selected at the Touro mine tailing in order to evaluate the effect of these different reclamation treatments on the biological soil quality: (1) Control (untreated), (2) Forest (vegetated), (3) Sludge (amended with sludges) and (4) Forest+Sludge (vegetated and amended). The new approach of the present work is that we evaluated the effect of planting trees or/and amending with sludges on the biological soil quality of mine sites polluted by metals under field conditions. The addition of sludges to mine sites recovered the biological quality of the soil, while vegetating with trees did not increase microbial biomass and function to the level of unpolluted sites. Moreover, amending with sludges increased the efficiency of the soil's microbial community to metabolize C and N, which was indicated by the decrease of the specific enzyme activities and the increase in the ratio Cmic:Nmic (shift towards predominance of fungi instead of bacteria). However, the high Cu and Cr concentrations still have negative influence on the microorganisms in all the treated soils. For the future remediation of mine soils, we recommend periodically adding sludge and planting native legume species.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2013.03.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2013.03.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jul 2015 Germany, SwitzerlandPublisher:Oxford University Press (OUP) Authors: Keil, Daniel; Niklaus, Pascal A.; von Riedmatten, Lars R.; Boeddinghaus, Runa S.; +5 AuthorsKeil, Daniel; Niklaus, Pascal A.; von Riedmatten, Lars R.; Boeddinghaus, Runa S.; Dormann, Carsten F.; Scherer-Lorenzen, Michael; Kandeler, Ellen; Marhan, Sven; Lueders, Tillmann;pmid: 26092950
Increased warming in spring and prolonged summer drought may alter soil microbial denitrification. We measured potential denitrification activity and denitrifier marker gene abundances (nirK, nirS, nosZ) in grasslands soils in three geographic regions characterized by site-specific land-use indices (LUI) after warming in spring, at an intermediate sampling and after summer drought. Potential denitrification was significantly increased by warming, but did not persist over the intermediate sampling. At the intermediate sampling, the relevance of grassland land-use intensity was reflected by increased potential N2O production at sites with higher LUI. Abundances of total bacteria did not respond to experimental warming or drought treatments, displaying resilience to minor and short-term effects of climate change. In contrast, nirS- and nirK-type denitrifiers were more influenced by drought in combination with LUI and pH, while the nosZ abundance responded to the summer drought manipulation. Land-use was a strong driver for potential denitrification as grasslands with higher LUI also had greater potentials for N2O emissions. We conclude that both warming and drought affected the denitrifying communities and the potential denitrification in grassland soils. However, these effects are overruled by regional and site-specific differences in soil chemical and physical properties which are also related to grassland land-use intensity.
FEMS Microbiology Ec... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2015 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsec/fiv066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert FEMS Microbiology Ec... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2015 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsec/fiv066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 United StatesPublisher:Elsevier BV Authors: Institute of Soil Science, University of Hohenheim, Emil Wolff Str. 27, D-70599 Stuttgart, Germany ( host institution ); Kandeler, Ellen; Mosier, Arvin R.; Morgan, Jack A.; +4 AuthorsInstitute of Soil Science, University of Hohenheim, Emil Wolff Str. 27, D-70599 Stuttgart, Germany ( host institution ); Kandeler, Ellen; Mosier, Arvin R.; Morgan, Jack A.; Milchunas, Daniel G.; King, Jennifer Y.; Rudolph, Sabine; Tscherko, Dagmar;Abstract Although elevation of CO 2 has been reported to impact soil microbial functions, little information is available on the spatial and temporal variation of this effect. The objective of this study was to determine the microbial response in a northern Colorado shortgrass steppe to a 5-year elevation of atmospheric CO 2 as well as the reversibility of the microbial response during a period of several months after shutting off the CO 2 amendment. The experiment was comprised of nine experimental plots: three chambered plots maintained at ambient CO 2 levels of 360 μmol mol −1 (ambient treatment), three chambered plots maintained at 720 μmol mol −1 CO 2 (elevated treatment) and three unchambered plots of equal ground area used as controls to monitor the chamber effect. Elevated CO 2 induced mainly an increase of enzyme activities (protease, xylanase, invertase, alkaline phosphatase, arylsulfatase) in the upper 5 cm of the soil and did not change microbial biomass in the soil profile. Since rhizodeposition and newly formed roots enlarged the pool of easily available substrates mainly in the upper soil layers, enzyme regulation (production and activity) rather than shifts in microbial abundance was the driving factor for higher enzyme activities in the upper soil. Repeated soil sampling during the third to fifth year of the experiment revealed an enhancement of enzyme activities which varied in the range of 20–80%. Discriminant analysis including all microbiological properties revealed that the enzyme pattern in 1999 and 2000 was dominated by the CO 2 and chamber effect, while in 2001 the influence of elevated CO 2 increased and the chamber effect decreased. Although microbial biomass did not show any response to elevated CO 2 during the main experiment, a significant increase of soil microbial N was detected as a post-treatment effect probably due to lower nutrient (nitrogen) competition between microorganisms and plants in this N-limited ecosystem. Whereas most enzyme activities showed a significant post-CO 2 effect in spring 2002 (following the conclusion of CO 2 enrichment the previous autumn, 2001), selective depletion of substrates is speculated to be the cause for non-significant treatment effects of most enzyme activities later in summer and autumn, 2002. Therefore, additional belowground carbon input mainly entered the fast cycling carbon pool and contributed little to long-term carbon storage in the semi-arid grassland.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2006License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00509349/00001Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2006.02.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 126 citations 126 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2006License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00509349/00001Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2006.02.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2007Embargo end date: 01 Jan 2007 SwitzerlandPublisher:Wiley Niklaus, Pascal A.; Alphei, J.; Kampichler, C.; Kandeler, E.; Körner, Christian; Tscherko, D.; Wohlfender, M.;pmid: 18229849
Terrestrial ecosystems consist of mutually dependent producer and decomposer subsystems, but not much is known on how their interactions are modified by plant diversity and elevated atmospheric CO2 concentrations. Factorially manipulating grassland plant species diversity and atmospheric CO2 concentrations for five years, we tested whether high diversity or elevated CO2 sustain larger or more active soil communities, affect soil aggregation, water dynamics, or nutrient cycling, and whether plant diversity and elevated CO2 interact. Nitrogen (N) and phosphorus (P) pools, symbiotic N2 fixation, plant litter quality, soil moisture, soil physical structure, soil nematode, collembola and acari communities, soil microbial biomass and microflora community structure (phospholipid fatty acid [PLFA] profiles), soil enzyme activities, and rates of C fluxes to soils were measured. No increases in soil C fluxes or the biomass, number, or activity of soil organisms were detected at high plant diversity; soil H2O and aggregation remained unaltered. Elevated CO2 affected the ecosystem primarily by improving plant and soil water status by reducing leaf conductance, whereas changes in C cycling appeared to be of subordinate importance. Slowed-down soil drying cycles resulted in lower soil aggregation under elevated CO2. Collembola benefited from extra soil moisture under elevated CO2, whereas other faunal groups did not respond. Diversity effects and interactions with elevated CO2 may have been absent because soil responses were mainly driven by community-level processes such as rates of organic C input and water use; these drivers were not changed by plant diversity manipulations, possibly because our species diversity gradient did not extend below five species and because functional type composition remained unaltered. Our findings demonstrate that global change can affect soil aggregation, and we advocate that soil aggregation should be considered as a dynamic property that may respond to environmental changes and feed back on other ecosystem functions.
Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2007 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-2100.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2007 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-2100.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 SwitzerlandPublisher:Oxford University Press (OUP) SCHÜTZ, K.; Kandeler, E.; Nagel, P.; Scheu, S.; Ruess, L.;pmid: 20557572
Subsurface microorganisms are essential constituents of the soil purification processes associated with groundwater quality. In particular, soil enzyme activity determines the biodegradation of organic compounds passing through the soil profile. Transects from surface soil to a depth of 3.5 m were investigated for microbial and chemical soil characteristics at two groundwater recharge sites and one control site. The functional diversity of the microbial community was analyzed via the activity of eight enzymes. Acid phosphomonoesterase was dominant across sites and depths, followed by L-leucine aminopeptidase and beta-glucosidase. Structural [e.g. phospholipid fatty acid (PLFA) pattern] and functional microbial diversities were linked to each other at the nonwatered site, whereas amendment with nutrients (DOC, NO(3)(-)) by flooding uncoupled this relationship. Microbial biomass did not differ between sites, whereas microbial respiration was the highest at the watered sites. Hence, excess nutrients available due to artificial groundwater recharge could not compensate for the limitation by others (e.g. phosphorus as assigned by acid phosphomonoesterase activity). Instead, at a similar microbial biomass, waste respiration via overflow metabolism occurred. In summary, ample supply of carbon by flooding led to a separation of decomposition and microbial growth, which may play an important role in regulating purification processes during groundwater recharge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2010.00855.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2010.00855.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Bradford, M. A.; Jones, T. H.; Bardgett, Richard D.; Black, Helaina I. J.; Boag, B.; Bonkowski, M.; Cook, R.; Eggers, T.; Gange, A. C.; Grayston, S. J.; Kandeler, E.; McCaig, A. E.; Newington, J. E.; Prosser, J. I.; Setälä, H.; Staddon, P. L.; Tordoff, G. M.; Tscherko, D.; Lawton, J. H.;pmid: 12386334
Human impacts, including global change, may alter the composition of soil faunal communities, but consequences for ecosystem functioning are poorly understood. We constructed model grassland systems in the Ecotron controlled environment facility and manipulated soil community composition through assemblages of different animal body sizes. Plant community composition, microbial and root biomass, decomposition rate, and mycorrhizal colonization were all markedly affected. However, two key ecosystem processes, aboveground net primary productivity and net ecosystem productivity, were surprisingly resistant to these changes. We hypothesize that positive and negative faunal-mediated effects in soil communities cancel each other out, causing no net ecosystem effects.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2002Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1075805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu252 citations 252 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2002Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1075805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 GermanyPublisher:Public Library of Science (PLoS) Christiane Fischer; Janine Groh; Yvonne Oelmann; Marion Schrumpf; Wolfgang W. Weisser; Christa Lang; Jessica L. M. Gutknecht; François Buscot; François Buscot; Doreen Berner; Tesfaye Wubet; Georgia Erdmann; Waltraud X. Schulze; Nadine Herold; Ingo Schöning; Jörg Overmann; Volkmar Wolters; Roswitha B. Ehnes; Bärbel U. Foesel; Stefan Scheu; Klaus Birkhofer; Sven Marhan; Mark Maraun; Dominik Begerow; Gertrud Lohaus; Ellen Kandeler; Heiko Nacke; Jan Weinert; Rolf Daniel; Melanie M. Pollierer; Fabian Alt; Annabel Meyer; Michael Schloter; Astrid Näther; Tim Diekötter; Andrea Polle; Ernst Detlef Schulze; Andrey Yurkov; Bernhard Klarner;Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.
PLoS ONE arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2012 . Peer-reviewedLicense: CC BYPublication Server of Helmholtz Zentrum München (PuSH)Article . 2012Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2017License: CC BYData sources: Göttingen Research Online PublicationsPublikationsserver der Universität PotsdamArticle . 2012Data sources: Publikationsserver der Universität PotsdamEberhard Karls University Tübingen: Publication SystemArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0043292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2012 . Peer-reviewedLicense: CC BYPublication Server of Helmholtz Zentrum München (PuSH)Article . 2012Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2017License: CC BYData sources: Göttingen Research Online PublicationsPublikationsserver der Universität PotsdamArticle . 2012Data sources: Publikationsserver der Universität PotsdamEberhard Karls University Tübingen: Publication SystemArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0043292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, GermanyPublisher:Proceedings of the National Academy of Sciences Authors: Bradford, Mark A.; Wood, Stephen A.; Bardgett, Richard D.; Black, Helaina I. J.; +7 AuthorsBradford, Mark A.; Wood, Stephen A.; Bardgett, Richard D.; Black, Helaina I. J.; Bonkowski, Michael; Eggers, Till; Grayston, Susan J.; Kandeler, Ellen; Manning, Peter; Setala, Heikki; Jones, T. Hefin;Significance Ecosystem functioning is more strongly affected by biodiversity loss when multiple functions are considered because different species affect different functions. To quantify these biodiversity-functioning relationships, the emerging multifunctionality framework advocates calculation of indices that aggregate responses of individual functions. Data aggregation, however, is notorious for providing misleading information by obscuring true relationships between explanatory and response variables. We test the ability of common multifunctionality indices to reveal effects on key ecosystem functions of changes in soil communities. The multifunctionality indices all decrease with soil animal loss, but the responses of individual functions diverge markedly from these aggregated metrics. Application of the multifunctionality framework for landscape provision of multiple ecosystem services should therefore emphasize understanding relationships between communities and individual functions.
Proceedings of the N... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional RepositoryProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1413707111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 174 citations 174 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2014Data sources: The University of Manchester - Institutional RepositoryProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1413707111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United StatesPublisher:Elsevier BV Authors: Institute of Soil Science, University of Hohenheim, Emil Wolff Str. 27, D-70599 Stuttgart, Germany ( host institution ); Kandeler, Ellen; Mosier, Arvin R.; Morgan, Jack A.; +4 AuthorsInstitute of Soil Science, University of Hohenheim, Emil Wolff Str. 27, D-70599 Stuttgart, Germany ( host institution ); Kandeler, Ellen; Mosier, Arvin R.; Morgan, Jack A.; Milchunas, Daniel G.; King, Jennifer Y.; Rudolph, Sabine; Tscherko, Dagmar;Using open-top chambers (OTC) on the shortgrass steppe in northern Colorado, changes of microbial community composition were followed over the latter 3 years of a 5-year study of elevated atmospheric CO2 as well as during 12 months after CO2 amendment ended. The experiment was composed of nine experimental plots: three chambered plots maintained at ambient CO2 levels of 360±20 μmol mol−1 (ambient treatment), three chambered plots maintained at 720±20 μmol mol−1 CO2 (elevated treatment) and three unchambered plots. The abundance of fungal phospholipid fatty acids (PLFAs) shifted in the shortgrass steppe under the influence of elevation of CO2 over the period of 3 years. Whereas the content of the fungal signature molecule (18:2ω6) was similar in soils of the ambient and elevated treatments in the third year of the experiment, CO2 treatment increased the content of 18:2ω6 by around 60% during the two subsequent years. The shift of microbial community composition towards a more fungal dominated community was likely due to slowly changing substrate quality; plant community forage quality declined under elevated CO2 because of a decline of N in all tested species as well as shift in species composition towards greater abundance of the low forage quality species (Stipa comata). In the year after which CO2 enrichment had ceased, abundances of fungal and bacterial PLFAs in the post-CO2 treatment plots shifted slowly back towards the control plots. Therefore, quantity and quality of available substrates had not changed sufficiently to shift the microbial community permanently to a fungal dominated community. We conclude from PLFA composition of soil microorganisms during the CO2 elevation experiment and during the subsequent year after cessation of CO2 treatment that a shift towards a fungal dominated system under higher CO2 concentrations may slow down C cycling in soils and therefore enhance C sequestration in the shortgrass steppe in future CO2-enriched atmospheres.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2008License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00509356/00001Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2007.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2008License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00509356/00001Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2007.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Ellen Kandeler; Petra Högy; Sven Marhan; Andreas Fangmeier; Christian Poll;pmid: 23194550
Spring barley was grown in a field experiment under moderately elevated soil temperature and changed summer precipitation (amount and frequency). Elevated temperature affected the performance and grain quality characteristics more significant than changes in rainfall. Except for the decrease in thousand grain weight, warming had no impacts on aboveground biomass and grain yield traits. In grains, several proteinogenic amino acids concentrations were increased, whereas their composition was only slightly altered. Concentration and yield of total protein remained unaffected under warming. The concentrations of total non-structural carbohydrates, starch, fructose and raffinose were lower in plants grown at high temperatures, whereas maltose was higher. Crude fibre remained unaffected by warming, whereas concentrations of lipids and aluminium were reduced. Manipulation of precipitation only marginally affected barley grains: amount reduction increased the concentrations of several minerals (sodium, copper) and amino acids (leucine). The projected climate changes may most likely affect grain quality traits of interest for different markets and utilisation requirements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foodchem.2012.09.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu104 citations 104 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foodchem.2012.09.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Ellen Kandeler; Verónica Asensio; Emma F. Covelo;pmid: 23584036
Mine soils at the depleted copper mine in Touro (Northwest Spain) are physico-chemically degraded and polluted by chromium and copper. To increase the quality of these soils, some areas at this mine have been vegetated with eucalyptus or pines, amended with sludges, or received both treatments. Four sites were selected at the Touro mine tailing in order to evaluate the effect of these different reclamation treatments on the biological soil quality: (1) Control (untreated), (2) Forest (vegetated), (3) Sludge (amended with sludges) and (4) Forest+Sludge (vegetated and amended). The new approach of the present work is that we evaluated the effect of planting trees or/and amending with sludges on the biological soil quality of mine sites polluted by metals under field conditions. The addition of sludges to mine sites recovered the biological quality of the soil, while vegetating with trees did not increase microbial biomass and function to the level of unpolluted sites. Moreover, amending with sludges increased the efficiency of the soil's microbial community to metabolize C and N, which was indicated by the decrease of the specific enzyme activities and the increase in the ratio Cmic:Nmic (shift towards predominance of fungi instead of bacteria). However, the high Cu and Cr concentrations still have negative influence on the microorganisms in all the treated soils. For the future remediation of mine soils, we recommend periodically adding sludge and planting native legume species.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2013.03.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2013.03.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jul 2015 Germany, SwitzerlandPublisher:Oxford University Press (OUP) Authors: Keil, Daniel; Niklaus, Pascal A.; von Riedmatten, Lars R.; Boeddinghaus, Runa S.; +5 AuthorsKeil, Daniel; Niklaus, Pascal A.; von Riedmatten, Lars R.; Boeddinghaus, Runa S.; Dormann, Carsten F.; Scherer-Lorenzen, Michael; Kandeler, Ellen; Marhan, Sven; Lueders, Tillmann;pmid: 26092950
Increased warming in spring and prolonged summer drought may alter soil microbial denitrification. We measured potential denitrification activity and denitrifier marker gene abundances (nirK, nirS, nosZ) in grasslands soils in three geographic regions characterized by site-specific land-use indices (LUI) after warming in spring, at an intermediate sampling and after summer drought. Potential denitrification was significantly increased by warming, but did not persist over the intermediate sampling. At the intermediate sampling, the relevance of grassland land-use intensity was reflected by increased potential N2O production at sites with higher LUI. Abundances of total bacteria did not respond to experimental warming or drought treatments, displaying resilience to minor and short-term effects of climate change. In contrast, nirS- and nirK-type denitrifiers were more influenced by drought in combination with LUI and pH, while the nosZ abundance responded to the summer drought manipulation. Land-use was a strong driver for potential denitrification as grasslands with higher LUI also had greater potentials for N2O emissions. We conclude that both warming and drought affected the denitrifying communities and the potential denitrification in grassland soils. However, these effects are overruled by regional and site-specific differences in soil chemical and physical properties which are also related to grassland land-use intensity.
FEMS Microbiology Ec... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2015 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsec/fiv066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert FEMS Microbiology Ec... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2015 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsec/fiv066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 United StatesPublisher:Elsevier BV Authors: Institute of Soil Science, University of Hohenheim, Emil Wolff Str. 27, D-70599 Stuttgart, Germany ( host institution ); Kandeler, Ellen; Mosier, Arvin R.; Morgan, Jack A.; +4 AuthorsInstitute of Soil Science, University of Hohenheim, Emil Wolff Str. 27, D-70599 Stuttgart, Germany ( host institution ); Kandeler, Ellen; Mosier, Arvin R.; Morgan, Jack A.; Milchunas, Daniel G.; King, Jennifer Y.; Rudolph, Sabine; Tscherko, Dagmar;Abstract Although elevation of CO 2 has been reported to impact soil microbial functions, little information is available on the spatial and temporal variation of this effect. The objective of this study was to determine the microbial response in a northern Colorado shortgrass steppe to a 5-year elevation of atmospheric CO 2 as well as the reversibility of the microbial response during a period of several months after shutting off the CO 2 amendment. The experiment was comprised of nine experimental plots: three chambered plots maintained at ambient CO 2 levels of 360 μmol mol −1 (ambient treatment), three chambered plots maintained at 720 μmol mol −1 CO 2 (elevated treatment) and three unchambered plots of equal ground area used as controls to monitor the chamber effect. Elevated CO 2 induced mainly an increase of enzyme activities (protease, xylanase, invertase, alkaline phosphatase, arylsulfatase) in the upper 5 cm of the soil and did not change microbial biomass in the soil profile. Since rhizodeposition and newly formed roots enlarged the pool of easily available substrates mainly in the upper soil layers, enzyme regulation (production and activity) rather than shifts in microbial abundance was the driving factor for higher enzyme activities in the upper soil. Repeated soil sampling during the third to fifth year of the experiment revealed an enhancement of enzyme activities which varied in the range of 20–80%. Discriminant analysis including all microbiological properties revealed that the enzyme pattern in 1999 and 2000 was dominated by the CO 2 and chamber effect, while in 2001 the influence of elevated CO 2 increased and the chamber effect decreased. Although microbial biomass did not show any response to elevated CO 2 during the main experiment, a significant increase of soil microbial N was detected as a post-treatment effect probably due to lower nutrient (nitrogen) competition between microorganisms and plants in this N-limited ecosystem. Whereas most enzyme activities showed a significant post-CO 2 effect in spring 2002 (following the conclusion of CO 2 enrichment the previous autumn, 2001), selective depletion of substrates is speculated to be the cause for non-significant treatment effects of most enzyme activities later in summer and autumn, 2002. Therefore, additional belowground carbon input mainly entered the fast cycling carbon pool and contributed little to long-term carbon storage in the semi-arid grassland.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2006License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00509349/00001Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2006.02.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 126 citations 126 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2006License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00509349/00001Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2006.02.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2007Embargo end date: 01 Jan 2007 SwitzerlandPublisher:Wiley Niklaus, Pascal A.; Alphei, J.; Kampichler, C.; Kandeler, E.; Körner, Christian; Tscherko, D.; Wohlfender, M.;pmid: 18229849
Terrestrial ecosystems consist of mutually dependent producer and decomposer subsystems, but not much is known on how their interactions are modified by plant diversity and elevated atmospheric CO2 concentrations. Factorially manipulating grassland plant species diversity and atmospheric CO2 concentrations for five years, we tested whether high diversity or elevated CO2 sustain larger or more active soil communities, affect soil aggregation, water dynamics, or nutrient cycling, and whether plant diversity and elevated CO2 interact. Nitrogen (N) and phosphorus (P) pools, symbiotic N2 fixation, plant litter quality, soil moisture, soil physical structure, soil nematode, collembola and acari communities, soil microbial biomass and microflora community structure (phospholipid fatty acid [PLFA] profiles), soil enzyme activities, and rates of C fluxes to soils were measured. No increases in soil C fluxes or the biomass, number, or activity of soil organisms were detected at high plant diversity; soil H2O and aggregation remained unaltered. Elevated CO2 affected the ecosystem primarily by improving plant and soil water status by reducing leaf conductance, whereas changes in C cycling appeared to be of subordinate importance. Slowed-down soil drying cycles resulted in lower soil aggregation under elevated CO2. Collembola benefited from extra soil moisture under elevated CO2, whereas other faunal groups did not respond. Diversity effects and interactions with elevated CO2 may have been absent because soil responses were mainly driven by community-level processes such as rates of organic C input and water use; these drivers were not changed by plant diversity manipulations, possibly because our species diversity gradient did not extend below five species and because functional type composition remained unaltered. Our findings demonstrate that global change can affect soil aggregation, and we advocate that soil aggregation should be considered as a dynamic property that may respond to environmental changes and feed back on other ecosystem functions.
Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2007 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-2100.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down Zurich Open Repository and ArchiveArticle . 2007 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/06-2100.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 SwitzerlandPublisher:Oxford University Press (OUP) SCHÜTZ, K.; Kandeler, E.; Nagel, P.; Scheu, S.; Ruess, L.;pmid: 20557572
Subsurface microorganisms are essential constituents of the soil purification processes associated with groundwater quality. In particular, soil enzyme activity determines the biodegradation of organic compounds passing through the soil profile. Transects from surface soil to a depth of 3.5 m were investigated for microbial and chemical soil characteristics at two groundwater recharge sites and one control site. The functional diversity of the microbial community was analyzed via the activity of eight enzymes. Acid phosphomonoesterase was dominant across sites and depths, followed by L-leucine aminopeptidase and beta-glucosidase. Structural [e.g. phospholipid fatty acid (PLFA) pattern] and functional microbial diversities were linked to each other at the nonwatered site, whereas amendment with nutrients (DOC, NO(3)(-)) by flooding uncoupled this relationship. Microbial biomass did not differ between sites, whereas microbial respiration was the highest at the watered sites. Hence, excess nutrients available due to artificial groundwater recharge could not compensate for the limitation by others (e.g. phosphorus as assigned by acid phosphomonoesterase activity). Instead, at a similar microbial biomass, waste respiration via overflow metabolism occurred. In summary, ample supply of carbon by flooding led to a separation of decomposition and microbial growth, which may play an important role in regulating purification processes during groundwater recharge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2010.00855.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2010.00855.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Bradford, M. A.; Jones, T. H.; Bardgett, Richard D.; Black, Helaina I. J.; Boag, B.; Bonkowski, M.; Cook, R.; Eggers, T.; Gange, A. C.; Grayston, S. J.; Kandeler, E.; McCaig, A. E.; Newington, J. E.; Prosser, J. I.; Setälä, H.; Staddon, P. L.; Tordoff, G. M.; Tscherko, D.; Lawton, J. H.;pmid: 12386334
Human impacts, including global change, may alter the composition of soil faunal communities, but consequences for ecosystem functioning are poorly understood. We constructed model grassland systems in the Ecotron controlled environment facility and manipulated soil community composition through assemblages of different animal body sizes. Plant community composition, microbial and root biomass, decomposition rate, and mycorrhizal colonization were all markedly affected. However, two key ecosystem processes, aboveground net primary productivity and net ecosystem productivity, were surprisingly resistant to these changes. We hypothesize that positive and negative faunal-mediated effects in soil communities cancel each other out, causing no net ecosystem effects.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2002Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1075805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu252 citations 252 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2002Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1075805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 GermanyPublisher:Public Library of Science (PLoS) Christiane Fischer; Janine Groh; Yvonne Oelmann; Marion Schrumpf; Wolfgang W. Weisser; Christa Lang; Jessica L. M. Gutknecht; François Buscot; François Buscot; Doreen Berner; Tesfaye Wubet; Georgia Erdmann; Waltraud X. Schulze; Nadine Herold; Ingo Schöning; Jörg Overmann; Volkmar Wolters; Roswitha B. Ehnes; Bärbel U. Foesel; Stefan Scheu; Klaus Birkhofer; Sven Marhan; Mark Maraun; Dominik Begerow; Gertrud Lohaus; Ellen Kandeler; Heiko Nacke; Jan Weinert; Rolf Daniel; Melanie M. Pollierer; Fabian Alt; Annabel Meyer; Michael Schloter; Astrid Näther; Tim Diekötter; Andrea Polle; Ernst Detlef Schulze; Andrey Yurkov; Bernhard Klarner;Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.
PLoS ONE arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2012 . Peer-reviewedLicense: CC BYPublication Server of Helmholtz Zentrum München (PuSH)Article . 2012Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2017License: CC BYData sources: Göttingen Research Online PublicationsPublikationsserver der Universität PotsdamArticle . 2012Data sources: Publikationsserver der Universität PotsdamEberhard Karls University Tübingen: Publication SystemArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0043292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2012 . Peer-reviewedLicense: CC BYPublication Server of Helmholtz Zentrum München (PuSH)Article . 2012Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Göttingen Research Online PublicationsArticle . 2017License: CC BYData sources: Göttingen Research Online PublicationsPublikationsserver der Universität PotsdamArticle . 2012Data sources: Publikationsserver der Universität PotsdamEberhard Karls University Tübingen: Publication SystemArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0043292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu