- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009Publisher:Elsevier BV Authors: Nancy N. Rabalais; Robert J. Diaz; Rutger Rosenberg; Lisa A. Levin;pmid: 19853871
Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2009License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2009.09.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2009License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2009.09.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2022 France, France, United States, South Africa, United Kingdom, France, GermanyPublisher:Wiley Funded by:EC | FutureMARES, ANR | SOMBEEEC| FutureMARES ,ANR| SOMBEEYunne‐Jai Shin; Guy F. Midgley; Emma R. M. Archer; Almut Arneth; David K. A. Barnes; Lena Chan; Shizuka Hashimoto; Ove Hoegh‐Guldberg; Gregory Insarov; Paul Leadley; Lisa A. Levin; Hien T. Ngo; Ram Pandit; Aliny P. F. Pires; Hans‐Otto Pörtner; Alex D. Rogers; Robert J. Scholes; Josef Settele; Pete Smith;AbstractThe two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of ambitious strategies and targets by the Convention on Biological Diversity and the United Nations Framework Convention on Climate Change. Within their respective Conventions, the biodiversity and climate interlinked challenges have largely been addressed separately. There is evidence that conservation actions that halt, slow or reverse biodiversity loss can simultaneously slow anthropogenic mediated climate change significantly. This review highlights conservation actions which have the largest potential for mitigation of climate change. We note that conservation actions have mainly synergistic benefits and few antagonistic trade‐offs with climate change mitigation. Specifically, we identify direct co‐benefits in 14 out of the 21 action targets of the draft post‐2020 global biodiversity framework of the Convention on Biological Diversity, notwithstanding the many indirect links that can also support both biodiversity conservation and climate change mitigation. These relationships are context and scale‐dependent; therefore, we showcase examples of local biodiversity conservation actions that can be incentivized, guided and prioritized by global objectives and targets. The close interlinkages between biodiversity, climate change mitigation, other nature's contributions to people and good quality of life are seldom as integrated as they should be in management and policy. This review aims to re‐emphasize the vital relationships between biodiversity conservation actions and climate change mitigation in a timely manner, in support to major Conferences of Parties that are about to negotiate strategic frameworks and international goals for the decades to come.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7zt6r1tdData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90481Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/2164/18914Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaAberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 16 Powered bymore_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7zt6r1tdData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90481Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/2164/18914Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaAberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Annual Reviews Authors: Lisa A. Levin;pmid: 28961073
Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50–100 years, but with greater oxygen declines in intermediate waters (100–600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. Changes in respiration, circulation (including upwelling), nutrient inputs, and possibly methane release contribute to oxygen loss, often indirectly through stimulation of biological production and biological consumption. Microbes mediate many feedbacks in oxygen minimum zones that can either exacerbate or ameliorate deoxygenation via interacting nitrogen, sulfur, and carbon cycles. The paleo-record reflects drivers of and feedbacks to deoxygenation that have played out through the Phanerozoic on centennial, millennial, and hundred-million-year timescales. Natural oxygen variability has made it difficult to detect the emergence of a climate-forced signal of oxygen loss, but new modeling efforts now project emergence to occur in many areas in 15–25 years. Continued global deoxygenation is projected for the next 100 or more years under most emissions scenarios, but with regional heterogeneity. Notably, even small changes in oxygenation can have significant biological effects. New efforts to systematically observe oxygen changes throughout the open ocean are needed to help address gaps in understanding of ocean deoxygenation patterns and drivers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-121916-063359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu199 citations 199 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-121916-063359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United States, Spain, France, Spain, Netherlands, Italy, United States, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | ATLAS, EC | SponGES, NSF | Vision-mediated influence...EC| ATLAS ,EC| SponGES ,NSF| Vision-mediated influence of low oxygen on the physiology and ecology of marine larvaeAuthors: Telmo Morato; José‐Manuel González‐Irusta; Carlos Dominguez‐Carrió; Chih‐Lin Wei; +55 AuthorsTelmo Morato; José‐Manuel González‐Irusta; Carlos Dominguez‐Carrió; Chih‐Lin Wei; Andrew Davies; Andrew K. Sweetman; Gerald H. Taranto; Lindsay Beazley; Ana García‐Alegre; Anthony Grehan; Pascal Laffargue; Francisco Javier Murillo; Mar Sacau; Sandrine Vaz; Ellen Kenchington; Sophie Arnaud‐Haond; Oisín Callery; Giovanni Chimienti; Erik Cordes; Hronn Egilsdottir; André Freiwald; Ryan Gasbarro; Cristina Gutiérrez‐Zárate; Matthew Gianni; Kent Gilkinson; Vonda E. Wareham Hayes; Dierk Hebbeln; Kevin Hedges; Lea‐Anne Henry; David Johnson; Mariano Koen‐Alonso; Cam Lirette; Francesco Mastrototaro; Lénaick Menot; Tina Molodtsova; Pablo Durán Muñoz; Covadonga Orejas; Maria Grazia Pennino; Patricia Puerta; Stefán Á. Ragnarsson; Berta Ramiro‐Sánchez; Jake Rice; Jesús Rivera; J. Murray Roberts; Steve W. Ross; José L. Rueda; Íris Sampaio; Paul Snelgrove; David Stirling; Margaret A. Treble; Javier Urra; Johanne Vad; Dick van Oevelen; Les Watling; Wojciech Walkusz; Claudia Wienberg; Mathieu Woillez; Lisa A. Levin; Marina Carreiro‐Silva;AbstractThe deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep‐sea fauna, thereby compromising key ecosystem services. Understanding how climate change can lead to shifts in deep‐sea species distributions is critically important in developing management measures. We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold‐water coral and commercially important deep‐sea fish species under present‐day (1951–2000) environmental conditions and to project changes under severe, high emissions future (2081–2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean. Our models projected a decrease of 28%–100% in suitable habitat for cold‐water corals and a shift in suitable habitat for deep‐sea fishes of 2.0°–9.9° towards higher latitudes. The largest reductions in suitable habitat were projected for the scleractinian coral Lophelia pertusa and the octocoral Paragorgia arborea, with declines of at least 79% and 99% respectively. We projected the expansion of suitable habitat by 2100 only for the fishes Helicolenus dactylopterus and Sebastes mentella (20%–30%), mostly through northern latitudinal range expansion. Our results projected limited climate refugia locations in the North Atlantic by 2100 for scleractinian corals (30%–42% of present‐day suitable habitat), even smaller refugia locations for the octocorals Acanella arbuscula and Acanthogorgia armata (6%–14%), and almost no refugia for P. arborea. Our results emphasize the need to understand how anticipated climate change will affect the distribution of deep‐sea species including commercially important fishes and foundation species, and highlight the importance of identifying and preserving climate refugia for a range of area‐based planning and management tools.
Global Change Biolog... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11586/256957Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/0pn770m1Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2020Full-Text: https://hal.umontpellier.fr/hal-03411040Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEOArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 150 citations 150 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 97visibility views 97 download downloads 140 Powered bymore_vert Global Change Biolog... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11586/256957Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/0pn770m1Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2020Full-Text: https://hal.umontpellier.fr/hal-03411040Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEOArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:The Royal Society Authors: Lillian R. McCormick; Lisa A. Levin;Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with ‘fast’ vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation.This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017License: CC BYFull-Text: https://escholarship.org/uc/item/5r5527f1Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017License: CC BYFull-Text: https://escholarship.org/uc/item/5r5527f1Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:National Shellfisheries Association Authors: Lisa A. Levin; P. Ed Parnell; Michael Navarro; Michael Navarro;doi: 10.2983/035.037.0313
handle: 11122/10032
ABSTRACT The market squid Doryteuthis opalescens deposits embryo capsules onto the continental shelf from Baja California to southern Alaska, yet little is known about the environment of embryo habitat. This study provides a baseline of environmental data and insights on factors underlying site selection for embryo deposition off southern California, and defines current essential embryo habitat using (1) remotely operated vehicle–supported surveys of benthos and environmental variables, (2) SCUBA surveys, and (3) bottom measurements of T, S, pH, and O2. Here, embryo habitat is defined using embryo capsule density, capsule bed area, consistent bed footprint, and association with [O2] and pH (pCO2) on the shelf. Spatial variation in embryo capsule density and location appears dependent on environmental conditions, whereas the temporal pattern of year-round spawning is not. Embryos require [O2] greater than 160 µmol and pHT greater than 7.8. Temperature does not appear to be limiting (range: 9.9°C–15.5°C). D...
Journal of Shellfish... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2983/035.037.0313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Shellfish... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2983/035.037.0313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United States, Australia, United StatesPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | MIDAS, RSF | The World Ocean in the XX..., FCT | IF/00029/2014/CP1230/CT0002EC| MIDAS ,RSF| The World Ocean in the XXI Century: Climate, Ecosystems, Resources, Natural Disasters ,FCT| IF/00029/2014/CP1230/CT0002Craig R. Smith; Andrey Gebruk; Telmo Morato; Heiko Stuckas; Andrew Dale; Ana Colaço; Lisa A. Levin; Lisa A. Levin; Daniel C. Dunn; Kerry L. Howell; Marta Chantal Ribeiro; Patrick N. Halpin; Cindy Lee Van Dover; David W. Johnson; José Angel Alvarez Perez; Ron J. Etter; Philip Pe Weaver; Kristina M. Gjerde; Kristina M. Gjerde;An international initiative takes conservation planning into the deep ocean to inform environmental management of deep-sea mining.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018License: CC BY NCFull-Text: https://escholarship.org/uc/item/0wc8x7f4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aar4313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018License: CC BY NCFull-Text: https://escholarship.org/uc/item/0wc8x7f4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aar4313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:MDPI AG Funded by:NSF | Ocean Acidification Categ..., NSF | IGERT - Global Change, Ma..., NSF | Macrophyte-induced variab...NSF| Ocean Acidification Category 2: Collaborative Research - Development of geochemical proxies to evaluate larval pH-exposure history ,NSF| IGERT - Global Change, Marine Ecosystems, and Society ,NSF| Macrophyte-induced variability in coastal ocean pH and consequences for invertebrate larvaeChristina A. Frieder; Jennifer P. Gonzalez; Emily E. Bockmon; Lisa A. Levin; Michael Navarro;doi: 10.3390/w6082233
Spawning market squid lay embryo capsules on the seafloor of the continental shelf of the California Current System (CCS), where ocean acidification, deoxygenation and intensified upwelling lower the pH and [O2]. Squid statolith geochemistry has been shown to reflect the squid’s environment (e.g., seawater temperature and elemental concentration). We used real-world environmental levels of pH and [O2] observed on squid-embryo beds to test in the laboratory whether or not squid statolith geochemistry reflects environmental pH and [O2]. We asked whether pH and [O2] levels might affect the incorporation of element ratios (B:Ca, Mg:Ca, Sr:Ca, Ba:Ca, Pb:Ca, U:Ca) into squid embryonic statoliths as (1) individual elements and/or (2) multivariate elemental signatures, and consider future applications as proxies for pH and [O2] exposure. Embryo exposure to high and low pH and [O2] alone and together during development over four weeks only moderately affected elemental concentrations of the statoliths, and uranium was an important element driving these differences. Uranium:Ca was eight-times higher in statoliths exposed to low pHT (7.57–7.58) and low [O2] (79–82 µmol·kg−1) than those exposed to higher ambient pHT (7.92–7.94) and [O2] (241–243 µmol·kg−1). In a separate experiment, exposure to low pHT (7.55–7.56) or low [O2] (83–86 µmol·kg−1) yielded elevated U:Ca and Sr:Ca in the low [O2] treatment only. We found capsular effects on multiple elements in statoliths of all treatments. The multivariate elemental signatures of embryonic statoliths were distinct among capsules, but did not reflect environmental factors (pH and/or [O2]). We show that statoliths of squid embryos developing inside capsules have the potential to reflect environmental pH and [O2], but that these “signals” are generated in concert with the physiological effects of the capsules and embryos themselves.
Water arrow_drop_down WaterOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2073-4441/6/8/2233/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6082233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2073-4441/6/8/2233/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6082233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Annual Reviews Authors: Myriam Sibuet; Lisa A. Levin;pmid: 22457970
Until recently, the deep continental margins (200–4,000 m) were perceived as monotonous mud slopes of limited ecological or environmental concern. Progress in seafloor mapping and direct observation now reveals unexpected heterogeneity, with a mosaic of habitats and ecosystems linked to geomorphological, geochemical, and hydrographic features that influence biotic diversity. Interactions among water masses, terrestrial inputs, sediment diagenesis, and tectonic activity create a multitude of ecological settings supporting distinct communities that populate canyons and seamounts, high-stress oxygen minimum zones, and methane seeps, as well as vast reefs of cold corals and sponges. This high regional biodiversity is fundamental to the production of valuable fisheries, energy, and mineral resources, and performs critical ecological services (nutrient cycling, carbon sequestration, nursery and habitat support). It is under significant threat from climate change and human resource extraction activities. Serious actions are required to preserve the functions and services provided by the deep-sea settings we are just now getting to know.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-120709-142714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu203 citations 203 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-120709-142714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Wiley Victor Evrard; Stanley B. Grant; Lisa A. Levin; Lisa A. Levin; Perran L. M. Cook; Andrew S. Mehring;doi: 10.1002/eap.1572
pmid: 28482116
AbstractOne of the goals of urban ecology is to link community structure to ecosystem function in urban habitats. Pollution‐tolerant wetland invertebrates have been shown to enhance greenhouse gas (GHG) flux in controlled laboratory experiments, suggesting that they may influence urban wetland roles as sources or sinks of GHG. However, it is unclear if their effects can be detected in highly variable conditions in a field setting. Here we use an extensive data set on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) flux in sediment cores (n = 103) collected from 10 urban wetlands in Melbourne, Australia during summer and winter in order to test for invertebrate enhancement of GHG flux. We detected significant multiplicative enhancement effects of temperature, sediment carbon content, and invertebrate density on CH4 and CO2 flux. Each doubling in density of oligochaete worms or large benthic invertebrates (oligochaete worms and midge larvae) corresponded to ~42% and ~15% increases in average CH4 and CO2 flux, respectively. However, despite exceptionally high densities, invertebrates did not appear to enhance N2O flux. This was likely due to fairly high organic carbon content in sediments (range 2.1–12.6%), and relatively low nitrate availability (median 1.96 μmol/L NO3−‐N), which highlights the context‐dependent nature of community structural effects on ecosystem function. The invertebrates enhancing GHG flux in this study are ubiquitous, and frequently dominate faunal communities in impaired aquatic ecosystems. Therefore, invertebrate effects on CO2 and CH4 flux may be common in wetlands impacted by urbanization, and urban wetlands may make greater contributions to the total GHG budgets of cities if the negative impacts of urbanization on wetlands are left unchecked.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/8bt3f1dcData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaEcological ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/8bt3f1dcData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaEcological ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009Publisher:Elsevier BV Authors: Nancy N. Rabalais; Robert J. Diaz; Rutger Rosenberg; Lisa A. Levin;pmid: 19853871
Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2009License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2009.09.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2009License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2009.09.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2022 France, France, United States, South Africa, United Kingdom, France, GermanyPublisher:Wiley Funded by:EC | FutureMARES, ANR | SOMBEEEC| FutureMARES ,ANR| SOMBEEYunne‐Jai Shin; Guy F. Midgley; Emma R. M. Archer; Almut Arneth; David K. A. Barnes; Lena Chan; Shizuka Hashimoto; Ove Hoegh‐Guldberg; Gregory Insarov; Paul Leadley; Lisa A. Levin; Hien T. Ngo; Ram Pandit; Aliny P. F. Pires; Hans‐Otto Pörtner; Alex D. Rogers; Robert J. Scholes; Josef Settele; Pete Smith;AbstractThe two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of ambitious strategies and targets by the Convention on Biological Diversity and the United Nations Framework Convention on Climate Change. Within their respective Conventions, the biodiversity and climate interlinked challenges have largely been addressed separately. There is evidence that conservation actions that halt, slow or reverse biodiversity loss can simultaneously slow anthropogenic mediated climate change significantly. This review highlights conservation actions which have the largest potential for mitigation of climate change. We note that conservation actions have mainly synergistic benefits and few antagonistic trade‐offs with climate change mitigation. Specifically, we identify direct co‐benefits in 14 out of the 21 action targets of the draft post‐2020 global biodiversity framework of the Convention on Biological Diversity, notwithstanding the many indirect links that can also support both biodiversity conservation and climate change mitigation. These relationships are context and scale‐dependent; therefore, we showcase examples of local biodiversity conservation actions that can be incentivized, guided and prioritized by global objectives and targets. The close interlinkages between biodiversity, climate change mitigation, other nature's contributions to people and good quality of life are seldom as integrated as they should be in management and policy. This review aims to re‐emphasize the vital relationships between biodiversity conservation actions and climate change mitigation in a timely manner, in support to major Conferences of Parties that are about to negotiate strategic frameworks and international goals for the decades to come.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7zt6r1tdData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90481Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/2164/18914Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaAberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 16 Powered bymore_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7zt6r1tdData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90481Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/2164/18914Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaAberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Annual Reviews Authors: Lisa A. Levin;pmid: 28961073
Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50–100 years, but with greater oxygen declines in intermediate waters (100–600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. Changes in respiration, circulation (including upwelling), nutrient inputs, and possibly methane release contribute to oxygen loss, often indirectly through stimulation of biological production and biological consumption. Microbes mediate many feedbacks in oxygen minimum zones that can either exacerbate or ameliorate deoxygenation via interacting nitrogen, sulfur, and carbon cycles. The paleo-record reflects drivers of and feedbacks to deoxygenation that have played out through the Phanerozoic on centennial, millennial, and hundred-million-year timescales. Natural oxygen variability has made it difficult to detect the emergence of a climate-forced signal of oxygen loss, but new modeling efforts now project emergence to occur in many areas in 15–25 years. Continued global deoxygenation is projected for the next 100 or more years under most emissions scenarios, but with regional heterogeneity. Notably, even small changes in oxygenation can have significant biological effects. New efforts to systematically observe oxygen changes throughout the open ocean are needed to help address gaps in understanding of ocean deoxygenation patterns and drivers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-121916-063359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu199 citations 199 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-121916-063359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United States, Spain, France, Spain, Netherlands, Italy, United States, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | ATLAS, EC | SponGES, NSF | Vision-mediated influence...EC| ATLAS ,EC| SponGES ,NSF| Vision-mediated influence of low oxygen on the physiology and ecology of marine larvaeAuthors: Telmo Morato; José‐Manuel González‐Irusta; Carlos Dominguez‐Carrió; Chih‐Lin Wei; +55 AuthorsTelmo Morato; José‐Manuel González‐Irusta; Carlos Dominguez‐Carrió; Chih‐Lin Wei; Andrew Davies; Andrew K. Sweetman; Gerald H. Taranto; Lindsay Beazley; Ana García‐Alegre; Anthony Grehan; Pascal Laffargue; Francisco Javier Murillo; Mar Sacau; Sandrine Vaz; Ellen Kenchington; Sophie Arnaud‐Haond; Oisín Callery; Giovanni Chimienti; Erik Cordes; Hronn Egilsdottir; André Freiwald; Ryan Gasbarro; Cristina Gutiérrez‐Zárate; Matthew Gianni; Kent Gilkinson; Vonda E. Wareham Hayes; Dierk Hebbeln; Kevin Hedges; Lea‐Anne Henry; David Johnson; Mariano Koen‐Alonso; Cam Lirette; Francesco Mastrototaro; Lénaick Menot; Tina Molodtsova; Pablo Durán Muñoz; Covadonga Orejas; Maria Grazia Pennino; Patricia Puerta; Stefán Á. Ragnarsson; Berta Ramiro‐Sánchez; Jake Rice; Jesús Rivera; J. Murray Roberts; Steve W. Ross; José L. Rueda; Íris Sampaio; Paul Snelgrove; David Stirling; Margaret A. Treble; Javier Urra; Johanne Vad; Dick van Oevelen; Les Watling; Wojciech Walkusz; Claudia Wienberg; Mathieu Woillez; Lisa A. Levin; Marina Carreiro‐Silva;AbstractThe deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep‐sea fauna, thereby compromising key ecosystem services. Understanding how climate change can lead to shifts in deep‐sea species distributions is critically important in developing management measures. We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold‐water coral and commercially important deep‐sea fish species under present‐day (1951–2000) environmental conditions and to project changes under severe, high emissions future (2081–2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean. Our models projected a decrease of 28%–100% in suitable habitat for cold‐water corals and a shift in suitable habitat for deep‐sea fishes of 2.0°–9.9° towards higher latitudes. The largest reductions in suitable habitat were projected for the scleractinian coral Lophelia pertusa and the octocoral Paragorgia arborea, with declines of at least 79% and 99% respectively. We projected the expansion of suitable habitat by 2100 only for the fishes Helicolenus dactylopterus and Sebastes mentella (20%–30%), mostly through northern latitudinal range expansion. Our results projected limited climate refugia locations in the North Atlantic by 2100 for scleractinian corals (30%–42% of present‐day suitable habitat), even smaller refugia locations for the octocorals Acanella arbuscula and Acanthogorgia armata (6%–14%), and almost no refugia for P. arborea. Our results emphasize the need to understand how anticipated climate change will affect the distribution of deep‐sea species including commercially important fishes and foundation species, and highlight the importance of identifying and preserving climate refugia for a range of area‐based planning and management tools.
Global Change Biolog... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11586/256957Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/0pn770m1Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2020Full-Text: https://hal.umontpellier.fr/hal-03411040Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEOArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 150 citations 150 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 97visibility views 97 download downloads 140 Powered bymore_vert Global Change Biolog... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Full-Text: https://hdl.handle.net/11586/256957Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/0pn770m1Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2020Full-Text: https://hal.umontpellier.fr/hal-03411040Data sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2020License: CC BY NC NDData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2020License: CC BYData sources: Repositorio Institucional Digital del IEOArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremereScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:The Royal Society Authors: Lillian R. McCormick; Lisa A. Levin;Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with ‘fast’ vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation.This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017License: CC BYFull-Text: https://escholarship.org/uc/item/5r5527f1Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017License: CC BYFull-Text: https://escholarship.org/uc/item/5r5527f1Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPhilosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2016.0322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:National Shellfisheries Association Authors: Lisa A. Levin; P. Ed Parnell; Michael Navarro; Michael Navarro;doi: 10.2983/035.037.0313
handle: 11122/10032
ABSTRACT The market squid Doryteuthis opalescens deposits embryo capsules onto the continental shelf from Baja California to southern Alaska, yet little is known about the environment of embryo habitat. This study provides a baseline of environmental data and insights on factors underlying site selection for embryo deposition off southern California, and defines current essential embryo habitat using (1) remotely operated vehicle–supported surveys of benthos and environmental variables, (2) SCUBA surveys, and (3) bottom measurements of T, S, pH, and O2. Here, embryo habitat is defined using embryo capsule density, capsule bed area, consistent bed footprint, and association with [O2] and pH (pCO2) on the shelf. Spatial variation in embryo capsule density and location appears dependent on environmental conditions, whereas the temporal pattern of year-round spawning is not. Embryos require [O2] greater than 160 µmol and pHT greater than 7.8. Temperature does not appear to be limiting (range: 9.9°C–15.5°C). D...
Journal of Shellfish... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2983/035.037.0313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Shellfish... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2983/035.037.0313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United States, Australia, United StatesPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | MIDAS, RSF | The World Ocean in the XX..., FCT | IF/00029/2014/CP1230/CT0002EC| MIDAS ,RSF| The World Ocean in the XXI Century: Climate, Ecosystems, Resources, Natural Disasters ,FCT| IF/00029/2014/CP1230/CT0002Craig R. Smith; Andrey Gebruk; Telmo Morato; Heiko Stuckas; Andrew Dale; Ana Colaço; Lisa A. Levin; Lisa A. Levin; Daniel C. Dunn; Kerry L. Howell; Marta Chantal Ribeiro; Patrick N. Halpin; Cindy Lee Van Dover; David W. Johnson; José Angel Alvarez Perez; Ron J. Etter; Philip Pe Weaver; Kristina M. Gjerde; Kristina M. Gjerde;An international initiative takes conservation planning into the deep ocean to inform environmental management of deep-sea mining.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018License: CC BY NCFull-Text: https://escholarship.org/uc/item/0wc8x7f4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aar4313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018License: CC BY NCFull-Text: https://escholarship.org/uc/item/0wc8x7f4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aar4313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014Publisher:MDPI AG Funded by:NSF | Ocean Acidification Categ..., NSF | IGERT - Global Change, Ma..., NSF | Macrophyte-induced variab...NSF| Ocean Acidification Category 2: Collaborative Research - Development of geochemical proxies to evaluate larval pH-exposure history ,NSF| IGERT - Global Change, Marine Ecosystems, and Society ,NSF| Macrophyte-induced variability in coastal ocean pH and consequences for invertebrate larvaeChristina A. Frieder; Jennifer P. Gonzalez; Emily E. Bockmon; Lisa A. Levin; Michael Navarro;doi: 10.3390/w6082233
Spawning market squid lay embryo capsules on the seafloor of the continental shelf of the California Current System (CCS), where ocean acidification, deoxygenation and intensified upwelling lower the pH and [O2]. Squid statolith geochemistry has been shown to reflect the squid’s environment (e.g., seawater temperature and elemental concentration). We used real-world environmental levels of pH and [O2] observed on squid-embryo beds to test in the laboratory whether or not squid statolith geochemistry reflects environmental pH and [O2]. We asked whether pH and [O2] levels might affect the incorporation of element ratios (B:Ca, Mg:Ca, Sr:Ca, Ba:Ca, Pb:Ca, U:Ca) into squid embryonic statoliths as (1) individual elements and/or (2) multivariate elemental signatures, and consider future applications as proxies for pH and [O2] exposure. Embryo exposure to high and low pH and [O2] alone and together during development over four weeks only moderately affected elemental concentrations of the statoliths, and uranium was an important element driving these differences. Uranium:Ca was eight-times higher in statoliths exposed to low pHT (7.57–7.58) and low [O2] (79–82 µmol·kg−1) than those exposed to higher ambient pHT (7.92–7.94) and [O2] (241–243 µmol·kg−1). In a separate experiment, exposure to low pHT (7.55–7.56) or low [O2] (83–86 µmol·kg−1) yielded elevated U:Ca and Sr:Ca in the low [O2] treatment only. We found capsular effects on multiple elements in statoliths of all treatments. The multivariate elemental signatures of embryonic statoliths were distinct among capsules, but did not reflect environmental factors (pH and/or [O2]). We show that statoliths of squid embryos developing inside capsules have the potential to reflect environmental pH and [O2], but that these “signals” are generated in concert with the physiological effects of the capsules and embryos themselves.
Water arrow_drop_down WaterOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2073-4441/6/8/2233/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6082233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2073-4441/6/8/2233/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6082233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Annual Reviews Authors: Myriam Sibuet; Lisa A. Levin;pmid: 22457970
Until recently, the deep continental margins (200–4,000 m) were perceived as monotonous mud slopes of limited ecological or environmental concern. Progress in seafloor mapping and direct observation now reveals unexpected heterogeneity, with a mosaic of habitats and ecosystems linked to geomorphological, geochemical, and hydrographic features that influence biotic diversity. Interactions among water masses, terrestrial inputs, sediment diagenesis, and tectonic activity create a multitude of ecological settings supporting distinct communities that populate canyons and seamounts, high-stress oxygen minimum zones, and methane seeps, as well as vast reefs of cold corals and sponges. This high regional biodiversity is fundamental to the production of valuable fisheries, energy, and mineral resources, and performs critical ecological services (nutrient cycling, carbon sequestration, nursery and habitat support). It is under significant threat from climate change and human resource extraction activities. Serious actions are required to preserve the functions and services provided by the deep-sea settings we are just now getting to know.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-120709-142714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu203 citations 203 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-120709-142714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Wiley Victor Evrard; Stanley B. Grant; Lisa A. Levin; Lisa A. Levin; Perran L. M. Cook; Andrew S. Mehring;doi: 10.1002/eap.1572
pmid: 28482116
AbstractOne of the goals of urban ecology is to link community structure to ecosystem function in urban habitats. Pollution‐tolerant wetland invertebrates have been shown to enhance greenhouse gas (GHG) flux in controlled laboratory experiments, suggesting that they may influence urban wetland roles as sources or sinks of GHG. However, it is unclear if their effects can be detected in highly variable conditions in a field setting. Here we use an extensive data set on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) flux in sediment cores (n = 103) collected from 10 urban wetlands in Melbourne, Australia during summer and winter in order to test for invertebrate enhancement of GHG flux. We detected significant multiplicative enhancement effects of temperature, sediment carbon content, and invertebrate density on CH4 and CO2 flux. Each doubling in density of oligochaete worms or large benthic invertebrates (oligochaete worms and midge larvae) corresponded to ~42% and ~15% increases in average CH4 and CO2 flux, respectively. However, despite exceptionally high densities, invertebrates did not appear to enhance N2O flux. This was likely due to fairly high organic carbon content in sediments (range 2.1–12.6%), and relatively low nitrate availability (median 1.96 μmol/L NO3−‐N), which highlights the context‐dependent nature of community structural effects on ecosystem function. The invertebrates enhancing GHG flux in this study are ubiquitous, and frequently dominate faunal communities in impaired aquatic ecosystems. Therefore, invertebrate effects on CO2 and CH4 flux may be common in wetlands impacted by urbanization, and urban wetlands may make greater contributions to the total GHG budgets of cities if the negative impacts of urbanization on wetlands are left unchecked.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/8bt3f1dcData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaEcological ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/8bt3f1dcData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaEcological ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu