- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2006 ItalyPublisher:ASME International Authors: FERRARI, MARIO LUIGI; D. Bernardi; MASSARDO, ARISTIDE;doi: 10.1115/1.2211631
handle: 11567/390740
Our goal in this work is the improvement of the ejector performance inside hybrid systems supporting the theoretical activity with experimental tests. In fact, after a preliminary ejector design, an experimental rig has been developed to test single stage ejectors for hybrid systems at different operative conditions of mass flow rates, pressures, and temperatures. At first, an open circuit has been built to perform tests at atmospheric conditions in the secondary duct. Then, to emulate a SOFC anodic recirculation device, the circuit has been closed, introducing a fuel cell volume in a reduced scale. This configuration is important to test ejectors at pressurized conditions, both in primary and secondary ducts. Finally, the volume has been equipped with an electrical heater and the rig has been thermally insulated to test ejectors with secondary flows at high temperature, necessary to obtain values in similitude conditions with the real ones. This test rig has been used to validate simplified and CFD models necessary to design the ejectors and investigate the internal fluid dynamic phenomena. In fact, the application of CFD validated models has allowed us to improve the performance of ejectors for hybrid systems optimizing the geometry in terms of primary and secondary ducts, mixing chamber length, and diffuser. However, the simplified approach is essential to start the analysis with an effective preliminary geometry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.2211631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.2211631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, ItalyPublisher:Wiley Authors: U. M. Damo; FERRARI, MARIO LUIGI; A. Turan; MASSARDO, ARISTIDE;handle: 11567/779197
AbstractThis paper reports a new innovative re‐compression technology for solid oxide fuel cell (SOFC) hybrid systems necessary to increase pressure at compressor outlet level (as required by fuel cell systems for managing cathodic recurculation and to increase SOFC efficiency). This work was based on a collaboration between the University of Manchester (United Kingdom) and the University of Genoa (Italy). The re‐compression study will be performed with the hybrid system emulator rig by TPG. This device is composed of the following technology: a microturbine package able to produce up to 100 kWe which was modified for external connections, external pipes designed for several purposes (by‐pass, measurement or bleed), and a high temperature modular vessel necessary to emulate the dimension of an SOFC stack. For the purpose of re‐compression, this test rig is planned to be equipped with a turbocharger capable of increasing pressure using part of recuperator outlet flow. Theoretical activity was considered before carrying out the real experimental tests to avoid plant risky conditions. So, it was necessary to develop a transient model (Matlab®‐Simulink® environment) to simulate the hybrid system emulator including the re‐compression system. The results obtained with the model were carried out considering the start‐up/shutdown phases of the turbocharger device.
Fuel Cells arrow_drop_down Fuel CellsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201400131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Fuel Cells arrow_drop_down Fuel CellsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201400131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 ItalyPublisher:ASME International Authors: MAGISTRI, LOREDANA; BOZZO, RICCARDO; COSTAMAGNA, PAOLA; MASSARDO, ARISTIDE;doi: 10.1115/1.1719029
handle: 11567/249347
High-efficiency hybrid systems (HS) based on the coupling of solid oxide fuel cells (SOFCs) and gas turbines (GT) are analyzed in this paper through the use of two different approaches: simplified and detailed SOFC models. The simplified model, already presented by the authors, is very useful for HS design and off-design analysis. The detailed model, developed by the authors and verified through the use of available experimental data, allows the complete description of the SOFC reactor’s internal behavior to be obtained. The detailed model can also be utilized for HS modeling. Both models are presented and discussed in this paper, and they are compared to each other. The results obtained for the stand-alone SOFC reactor, and the HS design point configuration are presented and carefully discussed, also taking into account the nonlinear SOFC response.
Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2004 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.1719029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2004 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.1719029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2002 ItalyPublisher:ASMEDC Authors: MAGISTRI, LOREDANA; R. BOZZO; P. COSTAMAGNA; MASSARDO, ARISTIDE;doi: 10.1115/gt2002-30653
handle: 11567/214446
High efficiency Hybrid Systems (HS) based on the coupling of Solid Oxide Fuel Cells (SOFCs) and Gas Turbines (GT) are analysed in this paper through the use of two different approaches: simplified and detailed SOFC models. The simplified model, already presented by the Authors1, is very useful for HS design and off-design analysis. The detailed model, developed by the Authors2 and verified through the use of available experimental data, allows the complete description of the SOFC reactor’s internal behaviour to be obtained. The detailed model can also be utilised for HS modelling. Both models are presented and discussed in this paper, and they are compared to each other. The results obtained for the stand-alone SOFC reactor, and the HS design point configuration are presented and carefully discussed, also taking into account the non linear SOFC response.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2002-30653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2002-30653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 ItalyPublisher:ASME International Authors: Cuneo, Alessandra; Traverso, Alberto; Massardo, Aristide F.;handle: 11567/940487
The dynamic modeling of energy systems can be used for different purposes, obtaining important information both for the design phase and control system strategies, increasing the confidence during experimental phase. Such analysis in dynamic conditions is generally performed considering fixed values for both geometrical and operational parameters such as volumes, orifices, but also initial temperatures, pressure. However, such characteristics are often subject to uncertainty, either because they are not known accurately or because they may depend on the operating conditions at the beginning of the relevant transient. With focus on a gas turbine fuel cell hybrid system (HS), compressor surge may or may not occur during transients, depending on the aforementioned cycle characteristics; hence, compressor surge events are affected by uncertainty. In this paper, a stochastic analysis was performed taking into account an emergency shut-down (ESD) in a fuel cell gas turbine HS, modeled with TRANSEO, a deterministic tool for the dynamic simulations. The aim of the paper is to identify the main parameters that impact on compressor surge margin. The stochastic analysis was performed through the response sensitivity analysis (RSA) method, a sensitivity-based approximation approach that overcomes the computational burden of sampling methods. The results show that the minimum surge margin occurs in two different ranges of rotational speed: a high-speed range and a low-speed range. The temperature and geometrical characteristics of the pressure vessel, where the fuel cell is installed, are the two main parameters that affect the surge margin during an emergency shut down.
Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2018 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4040687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2018 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4040687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Springer Science and Business Media LLC Authors: F. Reggio; M. L. Ferrari; P. Silvestri; A. F. Massardo;handle: 11567/969576
Compressor behaviour analysis in critical working conditions, such as incipient surge, represents a significant aspect in the turbomachinery research field. Turbines connected with large-size volumes present critical issues related to surge prevention especially during transient operations. Investigations based on acoustic and vibrational measurements appear to provide an interesting diagnostic and predictive solution by adopting suitable quantifiers calculated from microphone and accelerometer signals. For this scope a wide experimental activity has been conducted on a T100 microturbine connected with different volume sizes. A machine dynamical characterisation has been useful for better interpretation of signals during its transient to the surge. Hence, different possible methods of incipient surge identification have been developed through the use of different signal processing techniques in time, frequency and angle domain. These results will be useful for control system development to prevent compressor failures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11012-019-01016-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11012-019-01016-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type , Journal 1997 ItalyPublisher:American Society of Mechanical Engineers Authors: KORAKIANITIS T.; GRANTSTROM J.; WASSINGBO P.; MASSARDO, ARISTIDE;handle: 11567/210709
The design-point performance characteristics of a wide variety of combined-cogeneration power plants, with different amounts of supplementary firing (or no supplementary firing), different amounts of steam injection (or no steam injection), different amounts of exhaust gas condensation etc, without limiting these parameters to present-day limits are investigated. A representative power plant with appropriate components for these plant enhancements is developed. A computer program is used to evaluate the performance of various power plants using standard inputs for component efficiencies; and the design-point performance of these plants is computed. The results are presented as thermal efficiency, specific power, effectiveness, and specific rate of energy in district heating. The performance of the simple-cycle gas turbine dominates the overall plant performance; the plant efficiency and power are mainly determined by turbine inlet temperature and compressor pressure ratio; increasing amounts of steam injection in the gas turbine increases the efficiency and power; increasing amounts of supplementary firing decreases the efficiency but increases the power; with sufficient amounts of supplementary firing and steam injection the exhaust-gas condensate is sufficient to make up for water lost in steam injection; and the steam-turbine power is a fraction (0.1 to 0.5) of the gas-turbine power output. Regions of “optimum” parameters for the power plant based on design-point power, hot-water demand, and efficiency are shown. A method for fuel-cost allocation between electricity and hot water is recommended.
http://proceedings.a... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/97-gt-285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert http://proceedings.a... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/97-gt-285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Gadducci E.; Lamberti T.; Bellotti D.; Magistri L.; Massardo A. F.;handle: 11567/1062320
Abstract New policies and strict emission limits in the transports sector result in a gradual switch towards alternative fuels and hydrogen is getting attention: fuel cell systems are considered ideal energy converters of the next future. As the interest is rising in Proton Exchange Membrane Fuel Cells (PEMFC), there is a need for experimental research and dedicated laboratories on systems designed with Balance of Plant. In this context, the HI-SEA Laboratory (240-kW PEMFC by Nuvera FC, a joint between the University of Genoa-Fincantieri) was born. In this paper, the tuning of the laboratory to simulate a ship-likely environment is addressed, looking at the main problematics and resolutions, related to the cathodic line and the cooling control. Some guidelines are defined to install a PEMFC system onboard a ship exploiting the existing infrastructure. Thanks to the experimental campaign, a stack voltage model previously validated is employed to evaluate the performance of the system.
Archivio istituziona... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.04.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.04.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2002 ItalyPublisher:Elsevier BV Authors: BORCHIELLINI, Romano; MASSARDO A. F.; SANTARELLI, MASSIMO;handle: 11583/1397524 , 11583/1417690 , 11567/210704
The environomic analyses and optimization of three existing plants-steam cycle (320 MW), combined cycle (350 MW) and cogeneration gas turbine cycle (30 MW)-are here presented. The effects of the abatement devices of NO x and SO x emissions on the cost of electricity are evaluated. The effects of carbon dioxide emissions are also considered from two different points of view: CO 2 sequestration and CO 2 taxation (carbon tax). Optimisation du fonctionnement d'une centrale thermique, d'une centrale a cycle combine et d'un systeme de production combinee d'electricite et de chaleur, a turbine a gaz. Evaluation de l'impact des reductions des emissions de SO x et NO x , d'une taxation ou d'une sequestration des emissions de CO 2 , sur le cout de production d'electricite. Determination, pour chaque installation, de la valeur de la taxation des emissions de CO 2 , au dela de laquelle il est preferable de pieger le CO 2 .
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications Open Repository TOrinoConference object . 1999Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(02)00026-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications Open Repository TOrinoConference object . 1999Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(02)00026-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: RIVAROLO, MASSIMO; BELLOTTI, DARIA; A. Mendieta; MASSARDO, ARISTIDE;handle: 11567/778009
Abstract A thermo-economic analysis regarding large scale hydro-methane and methanol production from renewable sources (biomass and renewable electricity) is performed. The study is carried out investigating hydrogen and oxygen generation by water electrolysis, mainly employing the hydraulic energy produced from the 14 GW Itaipu Binacional Plant, owned by Paraguay and Brazil. Oxygen is employed in biomass gasification to synthesize methanol; the significant amount of CO 2 separated in the process is mixed with hydrogen produced by electrolysis in chemical reactors to produce hydro-methane. Hydro-methane is employed to supply natural gas vehicles in Paraguay, methanol is sold to Brazil, that is the largest consumer in South America. The analysis is performed employing time-dependent hydraulic energy related to the water that would normally not be used by the plant, named “spilled energy”, when available; in the remaining periods, electricity is acquired at higher cost by the national grid. For the different plant lay-outs, a thermo-economic analysis has been performed employing two different software, one for the design point and one for the time-dependent one entire year optimization, since spilled energy is strongly variable throughout the year. Optimal sizes for the generation plants have been determined, investigating the influence of electricity cost, size and plant configuration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2006 ItalyPublisher:ASME International Authors: FERRARI, MARIO LUIGI; D. Bernardi; MASSARDO, ARISTIDE;doi: 10.1115/1.2211631
handle: 11567/390740
Our goal in this work is the improvement of the ejector performance inside hybrid systems supporting the theoretical activity with experimental tests. In fact, after a preliminary ejector design, an experimental rig has been developed to test single stage ejectors for hybrid systems at different operative conditions of mass flow rates, pressures, and temperatures. At first, an open circuit has been built to perform tests at atmospheric conditions in the secondary duct. Then, to emulate a SOFC anodic recirculation device, the circuit has been closed, introducing a fuel cell volume in a reduced scale. This configuration is important to test ejectors at pressurized conditions, both in primary and secondary ducts. Finally, the volume has been equipped with an electrical heater and the rig has been thermally insulated to test ejectors with secondary flows at high temperature, necessary to obtain values in similitude conditions with the real ones. This test rig has been used to validate simplified and CFD models necessary to design the ejectors and investigate the internal fluid dynamic phenomena. In fact, the application of CFD validated models has allowed us to improve the performance of ejectors for hybrid systems optimizing the geometry in terms of primary and secondary ducts, mixing chamber length, and diffuser. However, the simplified approach is essential to start the analysis with an effective preliminary geometry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.2211631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.2211631&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, ItalyPublisher:Wiley Authors: U. M. Damo; FERRARI, MARIO LUIGI; A. Turan; MASSARDO, ARISTIDE;handle: 11567/779197
AbstractThis paper reports a new innovative re‐compression technology for solid oxide fuel cell (SOFC) hybrid systems necessary to increase pressure at compressor outlet level (as required by fuel cell systems for managing cathodic recurculation and to increase SOFC efficiency). This work was based on a collaboration between the University of Manchester (United Kingdom) and the University of Genoa (Italy). The re‐compression study will be performed with the hybrid system emulator rig by TPG. This device is composed of the following technology: a microturbine package able to produce up to 100 kWe which was modified for external connections, external pipes designed for several purposes (by‐pass, measurement or bleed), and a high temperature modular vessel necessary to emulate the dimension of an SOFC stack. For the purpose of re‐compression, this test rig is planned to be equipped with a turbocharger capable of increasing pressure using part of recuperator outlet flow. Theoretical activity was considered before carrying out the real experimental tests to avoid plant risky conditions. So, it was necessary to develop a transient model (Matlab®‐Simulink® environment) to simulate the hybrid system emulator including the re‐compression system. The results obtained with the model were carried out considering the start‐up/shutdown phases of the turbocharger device.
Fuel Cells arrow_drop_down Fuel CellsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201400131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Fuel Cells arrow_drop_down Fuel CellsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2015Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fuce.201400131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 ItalyPublisher:ASME International Authors: MAGISTRI, LOREDANA; BOZZO, RICCARDO; COSTAMAGNA, PAOLA; MASSARDO, ARISTIDE;doi: 10.1115/1.1719029
handle: 11567/249347
High-efficiency hybrid systems (HS) based on the coupling of solid oxide fuel cells (SOFCs) and gas turbines (GT) are analyzed in this paper through the use of two different approaches: simplified and detailed SOFC models. The simplified model, already presented by the authors, is very useful for HS design and off-design analysis. The detailed model, developed by the authors and verified through the use of available experimental data, allows the complete description of the SOFC reactor’s internal behavior to be obtained. The detailed model can also be utilized for HS modeling. Both models are presented and discussed in this paper, and they are compared to each other. The results obtained for the stand-alone SOFC reactor, and the HS design point configuration are presented and carefully discussed, also taking into account the nonlinear SOFC response.
Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2004 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.1719029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2004 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.1719029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2002 ItalyPublisher:ASMEDC Authors: MAGISTRI, LOREDANA; R. BOZZO; P. COSTAMAGNA; MASSARDO, ARISTIDE;doi: 10.1115/gt2002-30653
handle: 11567/214446
High efficiency Hybrid Systems (HS) based on the coupling of Solid Oxide Fuel Cells (SOFCs) and Gas Turbines (GT) are analysed in this paper through the use of two different approaches: simplified and detailed SOFC models. The simplified model, already presented by the Authors1, is very useful for HS design and off-design analysis. The detailed model, developed by the Authors2 and verified through the use of available experimental data, allows the complete description of the SOFC reactor’s internal behaviour to be obtained. The detailed model can also be utilised for HS modelling. Both models are presented and discussed in this paper, and they are compared to each other. The results obtained for the stand-alone SOFC reactor, and the HS design point configuration are presented and carefully discussed, also taking into account the non linear SOFC response.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2002-30653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2002-30653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 ItalyPublisher:ASME International Authors: Cuneo, Alessandra; Traverso, Alberto; Massardo, Aristide F.;handle: 11567/940487
The dynamic modeling of energy systems can be used for different purposes, obtaining important information both for the design phase and control system strategies, increasing the confidence during experimental phase. Such analysis in dynamic conditions is generally performed considering fixed values for both geometrical and operational parameters such as volumes, orifices, but also initial temperatures, pressure. However, such characteristics are often subject to uncertainty, either because they are not known accurately or because they may depend on the operating conditions at the beginning of the relevant transient. With focus on a gas turbine fuel cell hybrid system (HS), compressor surge may or may not occur during transients, depending on the aforementioned cycle characteristics; hence, compressor surge events are affected by uncertainty. In this paper, a stochastic analysis was performed taking into account an emergency shut-down (ESD) in a fuel cell gas turbine HS, modeled with TRANSEO, a deterministic tool for the dynamic simulations. The aim of the paper is to identify the main parameters that impact on compressor surge margin. The stochastic analysis was performed through the response sensitivity analysis (RSA) method, a sensitivity-based approximation approach that overcomes the computational burden of sampling methods. The results show that the minimum surge margin occurs in two different ranges of rotational speed: a high-speed range and a low-speed range. The temperature and geometrical characteristics of the pressure vessel, where the fuel cell is installed, are the two main parameters that affect the surge margin during an emergency shut down.
Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2018 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4040687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Engineeri... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2018 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4040687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Springer Science and Business Media LLC Authors: F. Reggio; M. L. Ferrari; P. Silvestri; A. F. Massardo;handle: 11567/969576
Compressor behaviour analysis in critical working conditions, such as incipient surge, represents a significant aspect in the turbomachinery research field. Turbines connected with large-size volumes present critical issues related to surge prevention especially during transient operations. Investigations based on acoustic and vibrational measurements appear to provide an interesting diagnostic and predictive solution by adopting suitable quantifiers calculated from microphone and accelerometer signals. For this scope a wide experimental activity has been conducted on a T100 microturbine connected with different volume sizes. A machine dynamical characterisation has been useful for better interpretation of signals during its transient to the surge. Hence, different possible methods of incipient surge identification have been developed through the use of different signal processing techniques in time, frequency and angle domain. These results will be useful for control system development to prevent compressor failures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11012-019-01016-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11012-019-01016-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type , Journal 1997 ItalyPublisher:American Society of Mechanical Engineers Authors: KORAKIANITIS T.; GRANTSTROM J.; WASSINGBO P.; MASSARDO, ARISTIDE;handle: 11567/210709
The design-point performance characteristics of a wide variety of combined-cogeneration power plants, with different amounts of supplementary firing (or no supplementary firing), different amounts of steam injection (or no steam injection), different amounts of exhaust gas condensation etc, without limiting these parameters to present-day limits are investigated. A representative power plant with appropriate components for these plant enhancements is developed. A computer program is used to evaluate the performance of various power plants using standard inputs for component efficiencies; and the design-point performance of these plants is computed. The results are presented as thermal efficiency, specific power, effectiveness, and specific rate of energy in district heating. The performance of the simple-cycle gas turbine dominates the overall plant performance; the plant efficiency and power are mainly determined by turbine inlet temperature and compressor pressure ratio; increasing amounts of steam injection in the gas turbine increases the efficiency and power; increasing amounts of supplementary firing decreases the efficiency but increases the power; with sufficient amounts of supplementary firing and steam injection the exhaust-gas condensate is sufficient to make up for water lost in steam injection; and the steam-turbine power is a fraction (0.1 to 0.5) of the gas-turbine power output. Regions of “optimum” parameters for the power plant based on design-point power, hot-water demand, and efficiency are shown. A method for fuel-cost allocation between electricity and hot water is recommended.
http://proceedings.a... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/97-gt-285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert http://proceedings.a... arrow_drop_down Journal of Engineering for Gas Turbines and PowerArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/97-gt-285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Gadducci E.; Lamberti T.; Bellotti D.; Magistri L.; Massardo A. F.;handle: 11567/1062320
Abstract New policies and strict emission limits in the transports sector result in a gradual switch towards alternative fuels and hydrogen is getting attention: fuel cell systems are considered ideal energy converters of the next future. As the interest is rising in Proton Exchange Membrane Fuel Cells (PEMFC), there is a need for experimental research and dedicated laboratories on systems designed with Balance of Plant. In this context, the HI-SEA Laboratory (240-kW PEMFC by Nuvera FC, a joint between the University of Genoa-Fincantieri) was born. In this paper, the tuning of the laboratory to simulate a ship-likely environment is addressed, looking at the main problematics and resolutions, related to the cathodic line and the cooling control. Some guidelines are defined to install a PEMFC system onboard a ship exploiting the existing infrastructure. Thanks to the experimental campaign, a stack voltage model previously validated is employed to evaluate the performance of the system.
Archivio istituziona... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.04.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.04.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2002 ItalyPublisher:Elsevier BV Authors: BORCHIELLINI, Romano; MASSARDO A. F.; SANTARELLI, MASSIMO;handle: 11583/1397524 , 11583/1417690 , 11567/210704
The environomic analyses and optimization of three existing plants-steam cycle (320 MW), combined cycle (350 MW) and cogeneration gas turbine cycle (30 MW)-are here presented. The effects of the abatement devices of NO x and SO x emissions on the cost of electricity are evaluated. The effects of carbon dioxide emissions are also considered from two different points of view: CO 2 sequestration and CO 2 taxation (carbon tax). Optimisation du fonctionnement d'une centrale thermique, d'une centrale a cycle combine et d'un systeme de production combinee d'electricite et de chaleur, a turbine a gaz. Evaluation de l'impact des reductions des emissions de SO x et NO x , d'une taxation ou d'une sequestration des emissions de CO 2 , sur le cout de production d'electricite. Determination, pour chaque installation, de la valeur de la taxation des emissions de CO 2 , au dela de laquelle il est preferable de pieger le CO 2 .
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications Open Repository TOrinoConference object . 1999Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(02)00026-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications Open Repository TOrinoConference object . 1999Data sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(02)00026-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: RIVAROLO, MASSIMO; BELLOTTI, DARIA; A. Mendieta; MASSARDO, ARISTIDE;handle: 11567/778009
Abstract A thermo-economic analysis regarding large scale hydro-methane and methanol production from renewable sources (biomass and renewable electricity) is performed. The study is carried out investigating hydrogen and oxygen generation by water electrolysis, mainly employing the hydraulic energy produced from the 14 GW Itaipu Binacional Plant, owned by Paraguay and Brazil. Oxygen is employed in biomass gasification to synthesize methanol; the significant amount of CO 2 separated in the process is mixed with hydrogen produced by electrolysis in chemical reactors to produce hydro-methane. Hydro-methane is employed to supply natural gas vehicles in Paraguay, methanol is sold to Brazil, that is the largest consumer in South America. The analysis is performed employing time-dependent hydraulic energy related to the water that would normally not be used by the plant, named “spilled energy”, when available; in the remaining periods, electricity is acquired at higher cost by the national grid. For the different plant lay-outs, a thermo-economic analysis has been performed employing two different software, one for the design point and one for the time-dependent one entire year optimization, since spilled energy is strongly variable throughout the year. Optimal sizes for the generation plants have been determined, investigating the influence of electricity cost, size and plant configuration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu