- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Przemysław Seruga; Małgorzata Krzywonos; Emilia den Boer; Łukasz Niedźwiecki; Agnieszka Urbanowska; Halina Pawlak-Kruczek;doi: 10.3390/en16010140
Current and future trends in the world population lead to the continuous growth of municipal waste volumes. Only in the EU-28 approx. 86 million tons of biowaste is produced yearly. On the other hand, the recent energy crisis calls for a fast transition towards more local and renewable energy sources. Most of this stream could be recycled through anaerobic digestion (AD) to produce energy and high-quality fertilizers. This paper presents a balance of dry anaerobic digestion of municipal biowaste based on three years of system monitoring in an industrial-scale AD plant. The results indicate that the average biogas production rate of 120 Nm3/ton of fresh waste can be achieved. Biogas utilization in combined heat and power (CHP) units leads to an overall positive energy balance at significantly reduced CO2 emissions. The overall CO2 emission reduction of 25.3–26.6% was achieved, considering that biogas utilization is environmentally neutral. Moreover, biowaste conversion allows digestate production to substitute mineral fertilizers in agriculture and other applications. It is beneficial for soil protection and a broader environmental perspective.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/140/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/140/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Przemysław Seruga; Małgorzata Krzywonos; Emilia den Boer; Łukasz Niedźwiecki; Agnieszka Urbanowska; Halina Pawlak-Kruczek;doi: 10.3390/en16010140
Current and future trends in the world population lead to the continuous growth of municipal waste volumes. Only in the EU-28 approx. 86 million tons of biowaste is produced yearly. On the other hand, the recent energy crisis calls for a fast transition towards more local and renewable energy sources. Most of this stream could be recycled through anaerobic digestion (AD) to produce energy and high-quality fertilizers. This paper presents a balance of dry anaerobic digestion of municipal biowaste based on three years of system monitoring in an industrial-scale AD plant. The results indicate that the average biogas production rate of 120 Nm3/ton of fresh waste can be achieved. Biogas utilization in combined heat and power (CHP) units leads to an overall positive energy balance at significantly reduced CO2 emissions. The overall CO2 emission reduction of 25.3–26.6% was achieved, considering that biogas utilization is environmentally neutral. Moreover, biowaste conversion allows digestate production to substitute mineral fertilizers in agriculture and other applications. It is beneficial for soil protection and a broader environmental perspective.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/140/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/140/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Alfred Błaszczyk; Sylwia Sady; Bogdan Pachołek; Dominika Jakubowska; Mariola Grzybowska-Brzezińska; Małgorzata Krzywonos; Stanisław Popek;doi: 10.3390/su16051717
The fruit processing industry generates enormous amounts of byproducts, which are primarily removed through landfill or incineration. However, these processes cause carbon dioxide and methane emissions and release dioxin into the environment. The management of fruit processing byproducts is important for reducing the amount of food waste that is sent to landfills and for developing strategies through the reuse of these products for valorization and economic added value. Fruit processing byproducts are rich sources of bioactive compounds and fermentable and nonfermentable sugars. Therefore, these materials are very attractive feedstocks for developing integrated multifeed biorefineries that coproduce a wide range of natural products and bioenergy. The studies presented here have shown sustainable strategies for managing fruit processing byproducts via a biorefinery approach to achieve full valorization via a circular economy. The full valorization project proposed five main phases, namely, pretreatment, extraction, dark or aerobic fermentation, anaerobic digestion, and post-treatment, as well as two additional pathways to generate additional bioelectricity. When choosing the appropriate directions for the presented concept, a technoeconomic analysis should be carried out, considering the type of biomass and its availability at the site of the biorefinery and throughout the year of production. Applying the proposed concept of biorefineries in closed-loop technology is a promising way to enhance economic efficiency and decrease environmental influence in accordance with sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Alfred Błaszczyk; Sylwia Sady; Bogdan Pachołek; Dominika Jakubowska; Mariola Grzybowska-Brzezińska; Małgorzata Krzywonos; Stanisław Popek;doi: 10.3390/su16051717
The fruit processing industry generates enormous amounts of byproducts, which are primarily removed through landfill or incineration. However, these processes cause carbon dioxide and methane emissions and release dioxin into the environment. The management of fruit processing byproducts is important for reducing the amount of food waste that is sent to landfills and for developing strategies through the reuse of these products for valorization and economic added value. Fruit processing byproducts are rich sources of bioactive compounds and fermentable and nonfermentable sugars. Therefore, these materials are very attractive feedstocks for developing integrated multifeed biorefineries that coproduce a wide range of natural products and bioenergy. The studies presented here have shown sustainable strategies for managing fruit processing byproducts via a biorefinery approach to achieve full valorization via a circular economy. The full valorization project proposed five main phases, namely, pretreatment, extraction, dark or aerobic fermentation, anaerobic digestion, and post-treatment, as well as two additional pathways to generate additional bioelectricity. When choosing the appropriate directions for the presented concept, a technoeconomic analysis should be carried out, considering the type of biomass and its availability at the site of the biorefinery and throughout the year of production. Applying the proposed concept of biorefineries in closed-loop technology is a promising way to enhance economic efficiency and decrease environmental influence in accordance with sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Authors: Hanna Pińkowska; Małgorzata Krzywonos; Paweł Wolak; Adrianna Złocińska;We propose a one-stage hydrothermal extraction of sugar beet pulp leading to effective co-production of pectin and neutral monosaccharides with a relatively high yield and satisfactory purity without the presence of an acidic catalyst. The optimal experimental design methodology was used for modelling and optimizing the yield of pectin and neutral monosaccharides. In good agreement with experimental results (R2 = 0.955), the model predicts an optimal yield of pectin (approx. 121.1 g kg−1 ± 0.47 g kg−1) at a temperature and time of about 118.1 °C and 21.5 min, respectively. The highest yield of the sum of neutral monosaccharides (approx. 82.6 g kg−1 ± 0.72 g kg−1) was obtained at about 116.2 °C and 26.4 min (R2 = 0.976). The obtained results are suitable for industrial upscaling and may provide an incentive to implement a new, environmentally friendly, simple, and effective method for treating waste product from the sugar refining industry, which has proved onerous until now.
Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/3/472/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24030472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/3/472/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24030472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Authors: Hanna Pińkowska; Małgorzata Krzywonos; Paweł Wolak; Adrianna Złocińska;We propose a one-stage hydrothermal extraction of sugar beet pulp leading to effective co-production of pectin and neutral monosaccharides with a relatively high yield and satisfactory purity without the presence of an acidic catalyst. The optimal experimental design methodology was used for modelling and optimizing the yield of pectin and neutral monosaccharides. In good agreement with experimental results (R2 = 0.955), the model predicts an optimal yield of pectin (approx. 121.1 g kg−1 ± 0.47 g kg−1) at a temperature and time of about 118.1 °C and 21.5 min, respectively. The highest yield of the sum of neutral monosaccharides (approx. 82.6 g kg−1 ± 0.72 g kg−1) was obtained at about 116.2 °C and 26.4 min (R2 = 0.976). The obtained results are suitable for industrial upscaling and may provide an incentive to implement a new, environmentally friendly, simple, and effective method for treating waste product from the sugar refining industry, which has proved onerous until now.
Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/3/472/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24030472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/3/472/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24030472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Hanna Pińkowska; Małgorzata Krzywonos; Paweł Wolak; Przemysław Seruga; Agata Górniak; Adrianna Złocińska; Michał Ptak;doi: 10.3390/en13215649
Waste solid residue from the hydrothermal extraction of pectin derived from sugar beet pulp was used as feedstock in the production of 5-hydroxymethylfurfural (5-HMF). The depolymerization of pectin-free sugar beet pulp (PF-SBP) to monosaccharides and their dehydration to 5-HMF were conducted in subcritical water using a batch reactor. The experimental design methodology was used in order to model the hydrothermal process and to optimize the operational parameters of the reaction, namely temperature and holding time. These parameters are required to achieve the highest yield of 5-HMF. The model predicts, in good agreement with experimental results (R2 = 0.935), an optimal yield of 5-HMF (of approximately 38% in relation to the cellulosic fraction content in the PF-SBP) at a temperature of 192.5 °C and a holding time of about 51.2 min. 5-HMF was successfully isolated from the reaction mixture using the liquid–liquid extraction method. The results are suitable for industrial upscaling and may become an incentive to introduce a new, environmentally friendly, uncomplicated, and efficient waste treatment method. The method would be used to treat products from the sugar refining industry, the treatment of which has proven to be problematic until now.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5649/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5649/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Hanna Pińkowska; Małgorzata Krzywonos; Paweł Wolak; Przemysław Seruga; Agata Górniak; Adrianna Złocińska; Michał Ptak;doi: 10.3390/en13215649
Waste solid residue from the hydrothermal extraction of pectin derived from sugar beet pulp was used as feedstock in the production of 5-hydroxymethylfurfural (5-HMF). The depolymerization of pectin-free sugar beet pulp (PF-SBP) to monosaccharides and their dehydration to 5-HMF were conducted in subcritical water using a batch reactor. The experimental design methodology was used in order to model the hydrothermal process and to optimize the operational parameters of the reaction, namely temperature and holding time. These parameters are required to achieve the highest yield of 5-HMF. The model predicts, in good agreement with experimental results (R2 = 0.935), an optimal yield of 5-HMF (of approximately 38% in relation to the cellulosic fraction content in the PF-SBP) at a temperature of 192.5 °C and a holding time of about 51.2 min. 5-HMF was successfully isolated from the reaction mixture using the liquid–liquid extraction method. The results are suitable for industrial upscaling and may become an incentive to introduce a new, environmentally friendly, uncomplicated, and efficient waste treatment method. The method would be used to treat products from the sugar refining industry, the treatment of which has proven to be problematic until now.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5649/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5649/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Izabela Kwil; Katarzyna Piwowar-Sulej; Małgorzata Krzywonos;doi: 10.3390/su12010424
Local food production is meaningful not only for a single producer but also for the consumer, and finally for the entire region. Therefore, it would be beneficial to take up the issue of local entrepreneurship in the context of food production. The aim of the study was to analyze important terms, research topics, and research results related to the issue of local entrepreneurship in the context of food production. Literature review revealed definitional discrepancies related to the subject of the study. Thus, the need to create an unambiguous definition of local food and local entrepreneurship was emphasized. Own definitions of these issues were provided. Most of the available publications are devoted to local food produced in selected countries. In the analyzed research papers, the problem of local food is most often correlated with marketing or health-promoting properties of local food. A research gap was identified: suggestions were made in regards to the research problems worth bringing up in empirical research in the interest of activating local entrepreneurship.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Izabela Kwil; Katarzyna Piwowar-Sulej; Małgorzata Krzywonos;doi: 10.3390/su12010424
Local food production is meaningful not only for a single producer but also for the consumer, and finally for the entire region. Therefore, it would be beneficial to take up the issue of local entrepreneurship in the context of food production. The aim of the study was to analyze important terms, research topics, and research results related to the issue of local entrepreneurship in the context of food production. Literature review revealed definitional discrepancies related to the subject of the study. Thus, the need to create an unambiguous definition of local food and local entrepreneurship was emphasized. Own definitions of these issues were provided. Most of the available publications are devoted to local food produced in selected countries. In the analyzed research papers, the problem of local food is most often correlated with marketing or health-promoting properties of local food. A research gap was identified: suggestions were made in regards to the research problems worth bringing up in empirical research in the interest of activating local entrepreneurship.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Michał Ptak; Agnieszka Skowrońska; Hanna Pińkowska; Małgorzata Krzywonos;doi: 10.3390/en15010175
The primary objective of this paper is to identify the possibilities of using sugar beet pulp as feedstock to produce a variety of added-value products. Such an application of the sugar production byproducts contributes to implementing circular bio-economy, which is a source of many economic, social, and environmental benefits. Specific objectives of this paper are: (1) Presenting the concept and meaning of circular bio-economy. (2) Characterizing properties of the sugar beet pulp from the perspective of using them as feedstock. (3) Determining the volume of production of the sugar beet pulp and the current methods of using them. (4) Determining the methods of obtaining attractive bioproducts and renewable energy from sugar beet pulp. Special attention was given to the amount of sugar beet pulp produced in Polish sugar refineries. Poland is among the European countries in which the volume of produced sugar is especially high. Therefore, the problem of appropriate waste management in the Polish sugar industry gains significant importance. The conducted literature review demonstrated that sugar beet pulp might be used as a feedstock in the production of many bio-products produced using a variety of methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Michał Ptak; Agnieszka Skowrońska; Hanna Pińkowska; Małgorzata Krzywonos;doi: 10.3390/en15010175
The primary objective of this paper is to identify the possibilities of using sugar beet pulp as feedstock to produce a variety of added-value products. Such an application of the sugar production byproducts contributes to implementing circular bio-economy, which is a source of many economic, social, and environmental benefits. Specific objectives of this paper are: (1) Presenting the concept and meaning of circular bio-economy. (2) Characterizing properties of the sugar beet pulp from the perspective of using them as feedstock. (3) Determining the volume of production of the sugar beet pulp and the current methods of using them. (4) Determining the methods of obtaining attractive bioproducts and renewable energy from sugar beet pulp. Special attention was given to the amount of sugar beet pulp produced in Polish sugar refineries. Poland is among the European countries in which the volume of produced sugar is especially high. Therefore, the problem of appropriate waste management in the Polish sugar industry gains significant importance. The conducted literature review demonstrated that sugar beet pulp might be used as a feedstock in the production of many bio-products produced using a variety of methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Przemysław Seruga; Małgorzata Krzywonos;doi: 10.3390/en14133971
Nowadays, municipal solid waste (MSW) management is one of the most critical issues. MSW may threaten the environment; however, the concerning high organic fraction content can be useful. This study aimed to compare the suitability of mechanically sorted organic fraction (OF) of MSW and source-segregated biowaste for biofertilizer usage. The compost and the effluents compositions were analyzed. Compost derived from biowaste can be applied to the soil, while, after processing OFMSW, the metal contents are too high. The exceeding limit values were noted, e.g., lead (over 80 mg/kg) and chrome (75 mg/kg). Effluents from biowaste treatment fulfill the national and UE fertilizers’ requirements, considering the heavy metal contents, while effluents from OFMSW treatments exceed the limit values. The biggest exceedings were observed for nickel (over 3 mg/kg) and zinc (over 500 mg/kg). In general, the heavy metal contamination of byproducts from the OFMSW treatment was much higher. At the same time, the biogenic elements, e.g., nitrogen and phosphorus concentrations, were much lower than the biowaste treatment byproducts; however, even for them, the concentrations of the biogenic elements were too low to meet EU requirements. The compost and effluents derived from the biowaste treatment may be suitable for crop applications, considering the current national requirements.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3971/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3971/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Przemysław Seruga; Małgorzata Krzywonos;doi: 10.3390/en14133971
Nowadays, municipal solid waste (MSW) management is one of the most critical issues. MSW may threaten the environment; however, the concerning high organic fraction content can be useful. This study aimed to compare the suitability of mechanically sorted organic fraction (OF) of MSW and source-segregated biowaste for biofertilizer usage. The compost and the effluents compositions were analyzed. Compost derived from biowaste can be applied to the soil, while, after processing OFMSW, the metal contents are too high. The exceeding limit values were noted, e.g., lead (over 80 mg/kg) and chrome (75 mg/kg). Effluents from biowaste treatment fulfill the national and UE fertilizers’ requirements, considering the heavy metal contents, while effluents from OFMSW treatments exceed the limit values. The biggest exceedings were observed for nickel (over 3 mg/kg) and zinc (over 500 mg/kg). In general, the heavy metal contamination of byproducts from the OFMSW treatment was much higher. At the same time, the biogenic elements, e.g., nitrogen and phosphorus concentrations, were much lower than the biowaste treatment byproducts; however, even for them, the concentrations of the biogenic elements were too low to meet EU requirements. The compost and effluents derived from the biowaste treatment may be suitable for crop applications, considering the current national requirements.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3971/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3971/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Małgorzata Krzywonos; Zdzisława Romanowska-Duda; Przemysław Seruga; Beata Messyasz; +1 AuthorsMałgorzata Krzywonos; Zdzisława Romanowska-Duda; Przemysław Seruga; Beata Messyasz; Stanisław Mec;doi: 10.3390/en16042058
Plants of the Lemnaceae family are becoming increasingly popular among researchers. The goal of the study was to characterize trends in scientific research related to the use of aquatic plants from the Lemnaceae family for energy purposes, especially for the production of biogas, bioethanol, and other biofuels. These plants fit perfectly into the concept of a circular economy. This study performed a bibliometric and in-depth content analysis to review the use of plants from the Lemnaceae family for biofuel production. A set of 666 articles published from 2008 to 2022 was identified from the Scopus and Web of Science databases. Different analytical scientometric tools (topic mapping and overlay visualization networks) were used to analyze 141 articles; the most influential countries, institutions, authors, journals, and articles were identified. Depth content analysis reveals five research areas: (i) development of duckweed growth and starch accumulation; (ii) development of the pretreatment techniques; (iii) development of ethanol fermentation; (iv) hydrothermal liquefaction and bio-oil production; and (v) anaerobic digestion and biogas production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Małgorzata Krzywonos; Zdzisława Romanowska-Duda; Przemysław Seruga; Beata Messyasz; +1 AuthorsMałgorzata Krzywonos; Zdzisława Romanowska-Duda; Przemysław Seruga; Beata Messyasz; Stanisław Mec;doi: 10.3390/en16042058
Plants of the Lemnaceae family are becoming increasingly popular among researchers. The goal of the study was to characterize trends in scientific research related to the use of aquatic plants from the Lemnaceae family for energy purposes, especially for the production of biogas, bioethanol, and other biofuels. These plants fit perfectly into the concept of a circular economy. This study performed a bibliometric and in-depth content analysis to review the use of plants from the Lemnaceae family for biofuel production. A set of 666 articles published from 2008 to 2022 was identified from the Scopus and Web of Science databases. Different analytical scientometric tools (topic mapping and overlay visualization networks) were used to analyze 141 articles; the most influential countries, institutions, authors, journals, and articles were identified. Depth content analysis reveals five research areas: (i) development of duckweed growth and starch accumulation; (ii) development of the pretreatment techniques; (iii) development of ethanol fermentation; (iv) hydrothermal liquefaction and bio-oil production; and (v) anaerobic digestion and biogas production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Małgorzata Krzywonos; Hanna Pińkowska; Joanna Mączyńska; Michał Sikora; Adam Kupczyk; Anna Bączyk; Karol Tucki; Izabela Wielewska;Abstract The objective of this paper was to compare the markets and methods of production of ethanol to be used in transport in Poland and Brazil. Differences in terminology associated with its use for transport purposes in both countries have been discussed, as well as the market-related aspects of such use, comparing, among other things, the scale of production and use in years 2010–2016 and presenting the results of research on attractiveness (value) of the market of transport biofuels (especially bioethanol) in Poland, which were compared to the perspectives of market development in Brazil. In Brazil, the share of renewable energy in total energy consumption is at the level of 42%, making it a world leader in use of energy from RES (renewable energy sources). 18% of the energy used is sugarcane bioenergy (bioethanol). At present, most of this production is being consumed by the domestic market, where ethyl alcohol is being sold as a pure ethanol fuel or mixed with gasoline. In Poland, the share of energy from renewable sources in end use of energy is 11.8%, and energy from liquid biofuels, including bioethanol, constitutes only 10.8% of this value. Although addition of bioethanol to gasoline available on the Polish market is acceptable, vehicles fueled with pure ethanol (like in Brazil) are not popular in Poland. The quantitative data presented indicates that the market of bioethanol in Poland, in relation to the Brazilian market of ethanol fuel, is very small. Production of this biofuel in Poland in year 2016 was almost 26 billion liters lower in comparison with Brazil. In 2007 the conventional biofuel sectors in Poland were considered to be relatively attractive components of the economy. In the case of methyl esters, the value of their production sector achieved the level of almost 68%, and of ethanol – almost 62%. The current results of research on the value of biofuel sectors in Poland are not encouraging in terms of investing in biofuels of this generation (conventional biofuels). Brazil has the longest history of success in terms of biofuels, in particular, bioethanol, however without a favorable taxation system, bioethanol is still more expensive than gasoline. According to forecasts, biodiesel production and consumption in Brazil are evolving in a linear manner, mainly due to the growing demand for fuel and the associated growth in the fleet of Brazilian vehicles and the perspective of increase of the biodiesel/diesel oil mix in the coming years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.12.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.12.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Małgorzata Krzywonos; Hanna Pińkowska; Joanna Mączyńska; Michał Sikora; Adam Kupczyk; Anna Bączyk; Karol Tucki; Izabela Wielewska;Abstract The objective of this paper was to compare the markets and methods of production of ethanol to be used in transport in Poland and Brazil. Differences in terminology associated with its use for transport purposes in both countries have been discussed, as well as the market-related aspects of such use, comparing, among other things, the scale of production and use in years 2010–2016 and presenting the results of research on attractiveness (value) of the market of transport biofuels (especially bioethanol) in Poland, which were compared to the perspectives of market development in Brazil. In Brazil, the share of renewable energy in total energy consumption is at the level of 42%, making it a world leader in use of energy from RES (renewable energy sources). 18% of the energy used is sugarcane bioenergy (bioethanol). At present, most of this production is being consumed by the domestic market, where ethyl alcohol is being sold as a pure ethanol fuel or mixed with gasoline. In Poland, the share of energy from renewable sources in end use of energy is 11.8%, and energy from liquid biofuels, including bioethanol, constitutes only 10.8% of this value. Although addition of bioethanol to gasoline available on the Polish market is acceptable, vehicles fueled with pure ethanol (like in Brazil) are not popular in Poland. The quantitative data presented indicates that the market of bioethanol in Poland, in relation to the Brazilian market of ethanol fuel, is very small. Production of this biofuel in Poland in year 2016 was almost 26 billion liters lower in comparison with Brazil. In 2007 the conventional biofuel sectors in Poland were considered to be relatively attractive components of the economy. In the case of methyl esters, the value of their production sector achieved the level of almost 68%, and of ethanol – almost 62%. The current results of research on the value of biofuel sectors in Poland are not encouraging in terms of investing in biofuels of this generation (conventional biofuels). Brazil has the longest history of success in terms of biofuels, in particular, bioethanol, however without a favorable taxation system, bioethanol is still more expensive than gasoline. According to forecasts, biodiesel production and consumption in Brazil are evolving in a linear manner, mainly due to the growing demand for fuel and the associated growth in the fleet of Brazilian vehicles and the perspective of increase of the biodiesel/diesel oil mix in the coming years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.12.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.12.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Tadeusz Miśkiewicz; Małgorzata Krzywonos; C.A. Kent; Edmund Cibis;pmid: 18329266
The objective of the study was to assess the effect of temperature on the extent of aerobic batch biodegradation of potato stillage with a mixed culture of bacteria of the genus Bacillus. The experiments were performed in a 5-l stirred-tank reactor at 20, 30, 35, 40, 45, 50, 55, 60, 63 and 65 degrees C with the pH of 7. Only at 65 degrees C, no reduction in chemical oxygen demand (COD) was found to occur. Over the temperature range of 20-63 degrees C, the removal efficiency was very high (with an extent of COD reduction following solids separation that varied between 77.57% and 89.14% after 125 h). The process ran at the fastest rate when the temperature ranged from 30 to 45 degrees C; after 43 h at the latest, COD removal amounted to 90% of the final removal efficiency value obtained for the process. At 20, 55, 60 and 63 degrees C, a 90% removal was attained after 80 h. Two criteria were proposed for the identification of the point in time when the process is to terminate. One of these consists in maximising the product of the extent of COD reduction and the extent of N-NH4 content reduction. The other criterion is a simplified one and involves the search for the minimal value of N-NH4 concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Tadeusz Miśkiewicz; Małgorzata Krzywonos; C.A. Kent; Edmund Cibis;pmid: 18329266
The objective of the study was to assess the effect of temperature on the extent of aerobic batch biodegradation of potato stillage with a mixed culture of bacteria of the genus Bacillus. The experiments were performed in a 5-l stirred-tank reactor at 20, 30, 35, 40, 45, 50, 55, 60, 63 and 65 degrees C with the pH of 7. Only at 65 degrees C, no reduction in chemical oxygen demand (COD) was found to occur. Over the temperature range of 20-63 degrees C, the removal efficiency was very high (with an extent of COD reduction following solids separation that varied between 77.57% and 89.14% after 125 h). The process ran at the fastest rate when the temperature ranged from 30 to 45 degrees C; after 43 h at the latest, COD removal amounted to 90% of the final removal efficiency value obtained for the process. At 20, 55, 60 and 63 degrees C, a 90% removal was attained after 80 h. Two criteria were proposed for the identification of the point in time when the process is to terminate. One of these consists in maximising the product of the extent of COD reduction and the extent of N-NH4 content reduction. The other criterion is a simplified one and involves the search for the minimal value of N-NH4 concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Przemysław Seruga; Małgorzata Krzywonos; Emilia den Boer; Łukasz Niedźwiecki; Agnieszka Urbanowska; Halina Pawlak-Kruczek;doi: 10.3390/en16010140
Current and future trends in the world population lead to the continuous growth of municipal waste volumes. Only in the EU-28 approx. 86 million tons of biowaste is produced yearly. On the other hand, the recent energy crisis calls for a fast transition towards more local and renewable energy sources. Most of this stream could be recycled through anaerobic digestion (AD) to produce energy and high-quality fertilizers. This paper presents a balance of dry anaerobic digestion of municipal biowaste based on three years of system monitoring in an industrial-scale AD plant. The results indicate that the average biogas production rate of 120 Nm3/ton of fresh waste can be achieved. Biogas utilization in combined heat and power (CHP) units leads to an overall positive energy balance at significantly reduced CO2 emissions. The overall CO2 emission reduction of 25.3–26.6% was achieved, considering that biogas utilization is environmentally neutral. Moreover, biowaste conversion allows digestate production to substitute mineral fertilizers in agriculture and other applications. It is beneficial for soil protection and a broader environmental perspective.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/140/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/140/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Przemysław Seruga; Małgorzata Krzywonos; Emilia den Boer; Łukasz Niedźwiecki; Agnieszka Urbanowska; Halina Pawlak-Kruczek;doi: 10.3390/en16010140
Current and future trends in the world population lead to the continuous growth of municipal waste volumes. Only in the EU-28 approx. 86 million tons of biowaste is produced yearly. On the other hand, the recent energy crisis calls for a fast transition towards more local and renewable energy sources. Most of this stream could be recycled through anaerobic digestion (AD) to produce energy and high-quality fertilizers. This paper presents a balance of dry anaerobic digestion of municipal biowaste based on three years of system monitoring in an industrial-scale AD plant. The results indicate that the average biogas production rate of 120 Nm3/ton of fresh waste can be achieved. Biogas utilization in combined heat and power (CHP) units leads to an overall positive energy balance at significantly reduced CO2 emissions. The overall CO2 emission reduction of 25.3–26.6% was achieved, considering that biogas utilization is environmentally neutral. Moreover, biowaste conversion allows digestate production to substitute mineral fertilizers in agriculture and other applications. It is beneficial for soil protection and a broader environmental perspective.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/140/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/140/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Alfred Błaszczyk; Sylwia Sady; Bogdan Pachołek; Dominika Jakubowska; Mariola Grzybowska-Brzezińska; Małgorzata Krzywonos; Stanisław Popek;doi: 10.3390/su16051717
The fruit processing industry generates enormous amounts of byproducts, which are primarily removed through landfill or incineration. However, these processes cause carbon dioxide and methane emissions and release dioxin into the environment. The management of fruit processing byproducts is important for reducing the amount of food waste that is sent to landfills and for developing strategies through the reuse of these products for valorization and economic added value. Fruit processing byproducts are rich sources of bioactive compounds and fermentable and nonfermentable sugars. Therefore, these materials are very attractive feedstocks for developing integrated multifeed biorefineries that coproduce a wide range of natural products and bioenergy. The studies presented here have shown sustainable strategies for managing fruit processing byproducts via a biorefinery approach to achieve full valorization via a circular economy. The full valorization project proposed five main phases, namely, pretreatment, extraction, dark or aerobic fermentation, anaerobic digestion, and post-treatment, as well as two additional pathways to generate additional bioelectricity. When choosing the appropriate directions for the presented concept, a technoeconomic analysis should be carried out, considering the type of biomass and its availability at the site of the biorefinery and throughout the year of production. Applying the proposed concept of biorefineries in closed-loop technology is a promising way to enhance economic efficiency and decrease environmental influence in accordance with sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Alfred Błaszczyk; Sylwia Sady; Bogdan Pachołek; Dominika Jakubowska; Mariola Grzybowska-Brzezińska; Małgorzata Krzywonos; Stanisław Popek;doi: 10.3390/su16051717
The fruit processing industry generates enormous amounts of byproducts, which are primarily removed through landfill or incineration. However, these processes cause carbon dioxide and methane emissions and release dioxin into the environment. The management of fruit processing byproducts is important for reducing the amount of food waste that is sent to landfills and for developing strategies through the reuse of these products for valorization and economic added value. Fruit processing byproducts are rich sources of bioactive compounds and fermentable and nonfermentable sugars. Therefore, these materials are very attractive feedstocks for developing integrated multifeed biorefineries that coproduce a wide range of natural products and bioenergy. The studies presented here have shown sustainable strategies for managing fruit processing byproducts via a biorefinery approach to achieve full valorization via a circular economy. The full valorization project proposed five main phases, namely, pretreatment, extraction, dark or aerobic fermentation, anaerobic digestion, and post-treatment, as well as two additional pathways to generate additional bioelectricity. When choosing the appropriate directions for the presented concept, a technoeconomic analysis should be carried out, considering the type of biomass and its availability at the site of the biorefinery and throughout the year of production. Applying the proposed concept of biorefineries in closed-loop technology is a promising way to enhance economic efficiency and decrease environmental influence in accordance with sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16051717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Authors: Hanna Pińkowska; Małgorzata Krzywonos; Paweł Wolak; Adrianna Złocińska;We propose a one-stage hydrothermal extraction of sugar beet pulp leading to effective co-production of pectin and neutral monosaccharides with a relatively high yield and satisfactory purity without the presence of an acidic catalyst. The optimal experimental design methodology was used for modelling and optimizing the yield of pectin and neutral monosaccharides. In good agreement with experimental results (R2 = 0.955), the model predicts an optimal yield of pectin (approx. 121.1 g kg−1 ± 0.47 g kg−1) at a temperature and time of about 118.1 °C and 21.5 min, respectively. The highest yield of the sum of neutral monosaccharides (approx. 82.6 g kg−1 ± 0.72 g kg−1) was obtained at about 116.2 °C and 26.4 min (R2 = 0.976). The obtained results are suitable for industrial upscaling and may provide an incentive to implement a new, environmentally friendly, simple, and effective method for treating waste product from the sugar refining industry, which has proved onerous until now.
Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/3/472/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24030472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/3/472/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24030472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Authors: Hanna Pińkowska; Małgorzata Krzywonos; Paweł Wolak; Adrianna Złocińska;We propose a one-stage hydrothermal extraction of sugar beet pulp leading to effective co-production of pectin and neutral monosaccharides with a relatively high yield and satisfactory purity without the presence of an acidic catalyst. The optimal experimental design methodology was used for modelling and optimizing the yield of pectin and neutral monosaccharides. In good agreement with experimental results (R2 = 0.955), the model predicts an optimal yield of pectin (approx. 121.1 g kg−1 ± 0.47 g kg−1) at a temperature and time of about 118.1 °C and 21.5 min, respectively. The highest yield of the sum of neutral monosaccharides (approx. 82.6 g kg−1 ± 0.72 g kg−1) was obtained at about 116.2 °C and 26.4 min (R2 = 0.976). The obtained results are suitable for industrial upscaling and may provide an incentive to implement a new, environmentally friendly, simple, and effective method for treating waste product from the sugar refining industry, which has proved onerous until now.
Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/3/472/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24030472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/3/472/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24030472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Hanna Pińkowska; Małgorzata Krzywonos; Paweł Wolak; Przemysław Seruga; Agata Górniak; Adrianna Złocińska; Michał Ptak;doi: 10.3390/en13215649
Waste solid residue from the hydrothermal extraction of pectin derived from sugar beet pulp was used as feedstock in the production of 5-hydroxymethylfurfural (5-HMF). The depolymerization of pectin-free sugar beet pulp (PF-SBP) to monosaccharides and their dehydration to 5-HMF were conducted in subcritical water using a batch reactor. The experimental design methodology was used in order to model the hydrothermal process and to optimize the operational parameters of the reaction, namely temperature and holding time. These parameters are required to achieve the highest yield of 5-HMF. The model predicts, in good agreement with experimental results (R2 = 0.935), an optimal yield of 5-HMF (of approximately 38% in relation to the cellulosic fraction content in the PF-SBP) at a temperature of 192.5 °C and a holding time of about 51.2 min. 5-HMF was successfully isolated from the reaction mixture using the liquid–liquid extraction method. The results are suitable for industrial upscaling and may become an incentive to introduce a new, environmentally friendly, uncomplicated, and efficient waste treatment method. The method would be used to treat products from the sugar refining industry, the treatment of which has proven to be problematic until now.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5649/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5649/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Hanna Pińkowska; Małgorzata Krzywonos; Paweł Wolak; Przemysław Seruga; Agata Górniak; Adrianna Złocińska; Michał Ptak;doi: 10.3390/en13215649
Waste solid residue from the hydrothermal extraction of pectin derived from sugar beet pulp was used as feedstock in the production of 5-hydroxymethylfurfural (5-HMF). The depolymerization of pectin-free sugar beet pulp (PF-SBP) to monosaccharides and their dehydration to 5-HMF were conducted in subcritical water using a batch reactor. The experimental design methodology was used in order to model the hydrothermal process and to optimize the operational parameters of the reaction, namely temperature and holding time. These parameters are required to achieve the highest yield of 5-HMF. The model predicts, in good agreement with experimental results (R2 = 0.935), an optimal yield of 5-HMF (of approximately 38% in relation to the cellulosic fraction content in the PF-SBP) at a temperature of 192.5 °C and a holding time of about 51.2 min. 5-HMF was successfully isolated from the reaction mixture using the liquid–liquid extraction method. The results are suitable for industrial upscaling and may become an incentive to introduce a new, environmentally friendly, uncomplicated, and efficient waste treatment method. The method would be used to treat products from the sugar refining industry, the treatment of which has proven to be problematic until now.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5649/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5649/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Izabela Kwil; Katarzyna Piwowar-Sulej; Małgorzata Krzywonos;doi: 10.3390/su12010424
Local food production is meaningful not only for a single producer but also for the consumer, and finally for the entire region. Therefore, it would be beneficial to take up the issue of local entrepreneurship in the context of food production. The aim of the study was to analyze important terms, research topics, and research results related to the issue of local entrepreneurship in the context of food production. Literature review revealed definitional discrepancies related to the subject of the study. Thus, the need to create an unambiguous definition of local food and local entrepreneurship was emphasized. Own definitions of these issues were provided. Most of the available publications are devoted to local food produced in selected countries. In the analyzed research papers, the problem of local food is most often correlated with marketing or health-promoting properties of local food. A research gap was identified: suggestions were made in regards to the research problems worth bringing up in empirical research in the interest of activating local entrepreneurship.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Izabela Kwil; Katarzyna Piwowar-Sulej; Małgorzata Krzywonos;doi: 10.3390/su12010424
Local food production is meaningful not only for a single producer but also for the consumer, and finally for the entire region. Therefore, it would be beneficial to take up the issue of local entrepreneurship in the context of food production. The aim of the study was to analyze important terms, research topics, and research results related to the issue of local entrepreneurship in the context of food production. Literature review revealed definitional discrepancies related to the subject of the study. Thus, the need to create an unambiguous definition of local food and local entrepreneurship was emphasized. Own definitions of these issues were provided. Most of the available publications are devoted to local food produced in selected countries. In the analyzed research papers, the problem of local food is most often correlated with marketing or health-promoting properties of local food. A research gap was identified: suggestions were made in regards to the research problems worth bringing up in empirical research in the interest of activating local entrepreneurship.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Michał Ptak; Agnieszka Skowrońska; Hanna Pińkowska; Małgorzata Krzywonos;doi: 10.3390/en15010175
The primary objective of this paper is to identify the possibilities of using sugar beet pulp as feedstock to produce a variety of added-value products. Such an application of the sugar production byproducts contributes to implementing circular bio-economy, which is a source of many economic, social, and environmental benefits. Specific objectives of this paper are: (1) Presenting the concept and meaning of circular bio-economy. (2) Characterizing properties of the sugar beet pulp from the perspective of using them as feedstock. (3) Determining the volume of production of the sugar beet pulp and the current methods of using them. (4) Determining the methods of obtaining attractive bioproducts and renewable energy from sugar beet pulp. Special attention was given to the amount of sugar beet pulp produced in Polish sugar refineries. Poland is among the European countries in which the volume of produced sugar is especially high. Therefore, the problem of appropriate waste management in the Polish sugar industry gains significant importance. The conducted literature review demonstrated that sugar beet pulp might be used as a feedstock in the production of many bio-products produced using a variety of methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Michał Ptak; Agnieszka Skowrońska; Hanna Pińkowska; Małgorzata Krzywonos;doi: 10.3390/en15010175
The primary objective of this paper is to identify the possibilities of using sugar beet pulp as feedstock to produce a variety of added-value products. Such an application of the sugar production byproducts contributes to implementing circular bio-economy, which is a source of many economic, social, and environmental benefits. Specific objectives of this paper are: (1) Presenting the concept and meaning of circular bio-economy. (2) Characterizing properties of the sugar beet pulp from the perspective of using them as feedstock. (3) Determining the volume of production of the sugar beet pulp and the current methods of using them. (4) Determining the methods of obtaining attractive bioproducts and renewable energy from sugar beet pulp. Special attention was given to the amount of sugar beet pulp produced in Polish sugar refineries. Poland is among the European countries in which the volume of produced sugar is especially high. Therefore, the problem of appropriate waste management in the Polish sugar industry gains significant importance. The conducted literature review demonstrated that sugar beet pulp might be used as a feedstock in the production of many bio-products produced using a variety of methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Przemysław Seruga; Małgorzata Krzywonos;doi: 10.3390/en14133971
Nowadays, municipal solid waste (MSW) management is one of the most critical issues. MSW may threaten the environment; however, the concerning high organic fraction content can be useful. This study aimed to compare the suitability of mechanically sorted organic fraction (OF) of MSW and source-segregated biowaste for biofertilizer usage. The compost and the effluents compositions were analyzed. Compost derived from biowaste can be applied to the soil, while, after processing OFMSW, the metal contents are too high. The exceeding limit values were noted, e.g., lead (over 80 mg/kg) and chrome (75 mg/kg). Effluents from biowaste treatment fulfill the national and UE fertilizers’ requirements, considering the heavy metal contents, while effluents from OFMSW treatments exceed the limit values. The biggest exceedings were observed for nickel (over 3 mg/kg) and zinc (over 500 mg/kg). In general, the heavy metal contamination of byproducts from the OFMSW treatment was much higher. At the same time, the biogenic elements, e.g., nitrogen and phosphorus concentrations, were much lower than the biowaste treatment byproducts; however, even for them, the concentrations of the biogenic elements were too low to meet EU requirements. The compost and effluents derived from the biowaste treatment may be suitable for crop applications, considering the current national requirements.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3971/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3971/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Przemysław Seruga; Małgorzata Krzywonos;doi: 10.3390/en14133971
Nowadays, municipal solid waste (MSW) management is one of the most critical issues. MSW may threaten the environment; however, the concerning high organic fraction content can be useful. This study aimed to compare the suitability of mechanically sorted organic fraction (OF) of MSW and source-segregated biowaste for biofertilizer usage. The compost and the effluents compositions were analyzed. Compost derived from biowaste can be applied to the soil, while, after processing OFMSW, the metal contents are too high. The exceeding limit values were noted, e.g., lead (over 80 mg/kg) and chrome (75 mg/kg). Effluents from biowaste treatment fulfill the national and UE fertilizers’ requirements, considering the heavy metal contents, while effluents from OFMSW treatments exceed the limit values. The biggest exceedings were observed for nickel (over 3 mg/kg) and zinc (over 500 mg/kg). In general, the heavy metal contamination of byproducts from the OFMSW treatment was much higher. At the same time, the biogenic elements, e.g., nitrogen and phosphorus concentrations, were much lower than the biowaste treatment byproducts; however, even for them, the concentrations of the biogenic elements were too low to meet EU requirements. The compost and effluents derived from the biowaste treatment may be suitable for crop applications, considering the current national requirements.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3971/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3971/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Małgorzata Krzywonos; Zdzisława Romanowska-Duda; Przemysław Seruga; Beata Messyasz; +1 AuthorsMałgorzata Krzywonos; Zdzisława Romanowska-Duda; Przemysław Seruga; Beata Messyasz; Stanisław Mec;doi: 10.3390/en16042058
Plants of the Lemnaceae family are becoming increasingly popular among researchers. The goal of the study was to characterize trends in scientific research related to the use of aquatic plants from the Lemnaceae family for energy purposes, especially for the production of biogas, bioethanol, and other biofuels. These plants fit perfectly into the concept of a circular economy. This study performed a bibliometric and in-depth content analysis to review the use of plants from the Lemnaceae family for biofuel production. A set of 666 articles published from 2008 to 2022 was identified from the Scopus and Web of Science databases. Different analytical scientometric tools (topic mapping and overlay visualization networks) were used to analyze 141 articles; the most influential countries, institutions, authors, journals, and articles were identified. Depth content analysis reveals five research areas: (i) development of duckweed growth and starch accumulation; (ii) development of the pretreatment techniques; (iii) development of ethanol fermentation; (iv) hydrothermal liquefaction and bio-oil production; and (v) anaerobic digestion and biogas production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Małgorzata Krzywonos; Zdzisława Romanowska-Duda; Przemysław Seruga; Beata Messyasz; +1 AuthorsMałgorzata Krzywonos; Zdzisława Romanowska-Duda; Przemysław Seruga; Beata Messyasz; Stanisław Mec;doi: 10.3390/en16042058
Plants of the Lemnaceae family are becoming increasingly popular among researchers. The goal of the study was to characterize trends in scientific research related to the use of aquatic plants from the Lemnaceae family for energy purposes, especially for the production of biogas, bioethanol, and other biofuels. These plants fit perfectly into the concept of a circular economy. This study performed a bibliometric and in-depth content analysis to review the use of plants from the Lemnaceae family for biofuel production. A set of 666 articles published from 2008 to 2022 was identified from the Scopus and Web of Science databases. Different analytical scientometric tools (topic mapping and overlay visualization networks) were used to analyze 141 articles; the most influential countries, institutions, authors, journals, and articles were identified. Depth content analysis reveals five research areas: (i) development of duckweed growth and starch accumulation; (ii) development of the pretreatment techniques; (iii) development of ethanol fermentation; (iv) hydrothermal liquefaction and bio-oil production; and (v) anaerobic digestion and biogas production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Małgorzata Krzywonos; Hanna Pińkowska; Joanna Mączyńska; Michał Sikora; Adam Kupczyk; Anna Bączyk; Karol Tucki; Izabela Wielewska;Abstract The objective of this paper was to compare the markets and methods of production of ethanol to be used in transport in Poland and Brazil. Differences in terminology associated with its use for transport purposes in both countries have been discussed, as well as the market-related aspects of such use, comparing, among other things, the scale of production and use in years 2010–2016 and presenting the results of research on attractiveness (value) of the market of transport biofuels (especially bioethanol) in Poland, which were compared to the perspectives of market development in Brazil. In Brazil, the share of renewable energy in total energy consumption is at the level of 42%, making it a world leader in use of energy from RES (renewable energy sources). 18% of the energy used is sugarcane bioenergy (bioethanol). At present, most of this production is being consumed by the domestic market, where ethyl alcohol is being sold as a pure ethanol fuel or mixed with gasoline. In Poland, the share of energy from renewable sources in end use of energy is 11.8%, and energy from liquid biofuels, including bioethanol, constitutes only 10.8% of this value. Although addition of bioethanol to gasoline available on the Polish market is acceptable, vehicles fueled with pure ethanol (like in Brazil) are not popular in Poland. The quantitative data presented indicates that the market of bioethanol in Poland, in relation to the Brazilian market of ethanol fuel, is very small. Production of this biofuel in Poland in year 2016 was almost 26 billion liters lower in comparison with Brazil. In 2007 the conventional biofuel sectors in Poland were considered to be relatively attractive components of the economy. In the case of methyl esters, the value of their production sector achieved the level of almost 68%, and of ethanol – almost 62%. The current results of research on the value of biofuel sectors in Poland are not encouraging in terms of investing in biofuels of this generation (conventional biofuels). Brazil has the longest history of success in terms of biofuels, in particular, bioethanol, however without a favorable taxation system, bioethanol is still more expensive than gasoline. According to forecasts, biodiesel production and consumption in Brazil are evolving in a linear manner, mainly due to the growing demand for fuel and the associated growth in the fleet of Brazilian vehicles and the perspective of increase of the biodiesel/diesel oil mix in the coming years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.12.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.12.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Małgorzata Krzywonos; Hanna Pińkowska; Joanna Mączyńska; Michał Sikora; Adam Kupczyk; Anna Bączyk; Karol Tucki; Izabela Wielewska;Abstract The objective of this paper was to compare the markets and methods of production of ethanol to be used in transport in Poland and Brazil. Differences in terminology associated with its use for transport purposes in both countries have been discussed, as well as the market-related aspects of such use, comparing, among other things, the scale of production and use in years 2010–2016 and presenting the results of research on attractiveness (value) of the market of transport biofuels (especially bioethanol) in Poland, which were compared to the perspectives of market development in Brazil. In Brazil, the share of renewable energy in total energy consumption is at the level of 42%, making it a world leader in use of energy from RES (renewable energy sources). 18% of the energy used is sugarcane bioenergy (bioethanol). At present, most of this production is being consumed by the domestic market, where ethyl alcohol is being sold as a pure ethanol fuel or mixed with gasoline. In Poland, the share of energy from renewable sources in end use of energy is 11.8%, and energy from liquid biofuels, including bioethanol, constitutes only 10.8% of this value. Although addition of bioethanol to gasoline available on the Polish market is acceptable, vehicles fueled with pure ethanol (like in Brazil) are not popular in Poland. The quantitative data presented indicates that the market of bioethanol in Poland, in relation to the Brazilian market of ethanol fuel, is very small. Production of this biofuel in Poland in year 2016 was almost 26 billion liters lower in comparison with Brazil. In 2007 the conventional biofuel sectors in Poland were considered to be relatively attractive components of the economy. In the case of methyl esters, the value of their production sector achieved the level of almost 68%, and of ethanol – almost 62%. The current results of research on the value of biofuel sectors in Poland are not encouraging in terms of investing in biofuels of this generation (conventional biofuels). Brazil has the longest history of success in terms of biofuels, in particular, bioethanol, however without a favorable taxation system, bioethanol is still more expensive than gasoline. According to forecasts, biodiesel production and consumption in Brazil are evolving in a linear manner, mainly due to the growing demand for fuel and the associated growth in the fleet of Brazilian vehicles and the perspective of increase of the biodiesel/diesel oil mix in the coming years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.12.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.12.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Tadeusz Miśkiewicz; Małgorzata Krzywonos; C.A. Kent; Edmund Cibis;pmid: 18329266
The objective of the study was to assess the effect of temperature on the extent of aerobic batch biodegradation of potato stillage with a mixed culture of bacteria of the genus Bacillus. The experiments were performed in a 5-l stirred-tank reactor at 20, 30, 35, 40, 45, 50, 55, 60, 63 and 65 degrees C with the pH of 7. Only at 65 degrees C, no reduction in chemical oxygen demand (COD) was found to occur. Over the temperature range of 20-63 degrees C, the removal efficiency was very high (with an extent of COD reduction following solids separation that varied between 77.57% and 89.14% after 125 h). The process ran at the fastest rate when the temperature ranged from 30 to 45 degrees C; after 43 h at the latest, COD removal amounted to 90% of the final removal efficiency value obtained for the process. At 20, 55, 60 and 63 degrees C, a 90% removal was attained after 80 h. Two criteria were proposed for the identification of the point in time when the process is to terminate. One of these consists in maximising the product of the extent of COD reduction and the extent of N-NH4 content reduction. The other criterion is a simplified one and involves the search for the minimal value of N-NH4 concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Tadeusz Miśkiewicz; Małgorzata Krzywonos; C.A. Kent; Edmund Cibis;pmid: 18329266
The objective of the study was to assess the effect of temperature on the extent of aerobic batch biodegradation of potato stillage with a mixed culture of bacteria of the genus Bacillus. The experiments were performed in a 5-l stirred-tank reactor at 20, 30, 35, 40, 45, 50, 55, 60, 63 and 65 degrees C with the pH of 7. Only at 65 degrees C, no reduction in chemical oxygen demand (COD) was found to occur. Over the temperature range of 20-63 degrees C, the removal efficiency was very high (with an extent of COD reduction following solids separation that varied between 77.57% and 89.14% after 125 h). The process ran at the fastest rate when the temperature ranged from 30 to 45 degrees C; after 43 h at the latest, COD removal amounted to 90% of the final removal efficiency value obtained for the process. At 20, 55, 60 and 63 degrees C, a 90% removal was attained after 80 h. Two criteria were proposed for the identification of the point in time when the process is to terminate. One of these consists in maximising the product of the extent of COD reduction and the extent of N-NH4 content reduction. The other criterion is a simplified one and involves the search for the minimal value of N-NH4 concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu